In the present study, a stochastic model of explosive ground motions applying the dimension-reduction method is proposed, and the reliability evaluation of a nonlinear frame structure under such excitations is realized by means of the probability density evolution method and an equivalent extreme-value-based reliability evaluation strategy. Firstly, the evolutionary power spectrum density function of the explosive ground motions is modeled by respectively identifying the normalized total energy distribution function and the frequency total energy distribution function on the basis of the measured motion records. In addition, an exponential model is constructed to forecast the seismic characteristics of the explosive ground motions based on the given distance to the explosive source and the charge quantity. Then, the representative samples of the explosive ground motions are simulated using the dimension-reduction method. The simulation results show that the generated acceleration samples have significant seismic characteristics of the explosive ground motions, and the accuracy is verified by comparing the second-order statistics with the sample set and the corresponding targets. Due to the fact that the probabilities of the representative samples simulated by the dimension-reduction method can compose a comprehensive probability set, it contributes to the refined dynamic response analysis and reliability evaluation of complex structures combining with the probability density evolution method. The accurate dynamic response analysis and reliability evaluation of a nonlinear frame structure illustrates the effectiveness of the proposed model and the dimension-reduction method for simulating the explosive ground motions. The numerical results demonstrate that the explosive ground motions have a substantial effect on the nonlinear behavior and the security of engineering structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.