In a two-level nested simulation, an outer level of simulation samples scenarios, while the inner level uses simulation to estimate a conditional expectation given the scenario. Applications include financial risk management, assessing the effects of simulation input uncertainty, and computing the expected value of gathering more information in decision theory. We show that an ANOVA-like estimator of the variance of the conditional expectation is unbiased under mild conditions, and we discuss the optimal number of inner-level samples to minimize this estimator's variance given a fixed computational budget. We show that as the computational budget increases, the optimal number of inner-level samples remains bounded. This finding contrasts with previous work on two-level simulation problems in which the inner-and outer-level sample sizes must both grow without bound for the estimation error to approach zero. The finding implies that the variance of a conditional expectation can be estimated to arbitrarily high precision by a simulation experiment with a fixed inner-level computational effort per scenario, which we call a one-and-a-half-level simulation. Because the optimal number of innerlevel samples is often quite small, a one-and-a-half-level simulation can avoid the heavy computational burden typically associated with two-level simulation.
In the paper we present a novel construction of Marshall–Olkin (MO) multivariate exponential distributions of failure times as distributions of the first-passage times of the coordinates of multidimensional Lévy subordinator processes above independent unit-mean exponential random variables. A time-inhomogeneous version is also given that replaces Lévy subordinators with additive subordinators. An attractive feature of MO distributions for applications, such as to portfolio credit risk, is its singular component that yields positive probabilities of simultaneous defaults of multiple obligors, capturing the default clustering phenomenon. The drawback of the original MO fatal shock construction of MO distributions is that it requires one to simulate 2n-1 independent exponential random variables. In practice, the dimensionality is typically on the order of hundreds or thousands of obligors in a large credit portfolio, rendering the MO fatal shock construction infeasible to simulate. The subordinator construction reduces the problem of simulating a rich subclass of MO distributions to simulating an n-dimensional subordinator. When one works with the class of subordinators constructed from independent one-dimensional subordinators with known transition distributions, such as gamma and inverse Gaussian, or their Sato versions in the additive case, the simulation effort is linear in n. To illustrate, we present a simulation of 100,000 samples of a credit portfolio with 1,000 obligors that takes less than 18 seconds on a PC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.