Carrier spins in semiconductor nanocrystals are promising candidates for quantum information processing. Using a combination of time-resolved Faraday rotation and photoluminescence spectroscopies, we demonstrate optical spin polarization and coherent spin precession in colloidal CsPbBr 3 nanocrystals that persists up to room temperature. By suppressing the influence of inhomogeneous hyperfine fields with a small applied magnetic field, we demonstrate inhomogeneous hole transverse spin-dephasing times (! ! *) that approach the nanocrystal photoluminescence lifetime, such that nearly all emitted photons derive from coherent hole spins. Thermally activated LO phonons drive additional spin dephasing at elevated temperatures, but coherent spin precession is still observed at room temperature. These data reveal several major distinctions between spins in nanocrystalline and bulk CsPbBr 3 and open the door for using metal-halide perovskite nanocrystals in spin-based quantum technologies.
In 2018, several major breakthroughs have been achieved in organic solar cells (OSCs) with the record power conversion efficiency (PCE) reaching over 17 %. With this increased efficiency, it is time to take a step forward to consider how to convert this technology into large scale production. For this, the economic and environmental profile of OSCs should be taken seriously‐simplified synthetic routes and green chemistry methods should be applied. According to previous studies, OSCs are competitive and profitable in the commercial market. However, toxic and/or hazardous chemicals are currently used in materials synthesis and device fabrication of OSCs. In this account, we will talk about contributions and efforts we have made to minimize the economic and environmental disadvantages in the production of OSCs. We will start with the background on how our projects were conceived and will specifically discuss our work on direct arylation and green solvent. Developments of direct arylation for synthesizing conjugated polymers will be illustrated along with our recent finding regarding the effect of green solvents on device performance and stability.
Green chemistry and a natural product together provide a cost-effective, safe and scalable solution to create luminophores with suppressed aggregation quenching in organic semiconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.