In order to fabricate a digital microfluidic (DMF) chip, which requires a patterned array of electrodes coated with a dielectric film, we explored two simple methods: Ballpoint pen printing to generate the electrodes, and wrapping of a dielectric plastic film to coat the electrodes. For precise and programmable printing of the patterned electrodes, we used a digital plotter with a ballpoint pen filled with a silver nanoparticle (AgNP) ink. Instead of using conventional material deposition methods, such as chemical vapor deposition, printing, and spin coating, for fabricating the thin dielectric layer, we used a simple method in which we prepared a thin dielectric layer using pre-made linear, low-density polyethylene (LLDPE) plastic (17-μm thick) by simple wrapping. We then sealed it tightly with thin silicone oil layers so that it could be used as a DMF chip. Such a treated dielectric layer showed good electrowetting performance for a sessile drop without contact angle hysteresis under an applied voltage of less than 170 V. By using this straightforward fabrication method, we quickly and affordably fabricated a paper-based DMF chip and demonstrated the digital electrofluidic actuation and manipulation of drops.
A spoof fingerprint was fabricated on paper and applied for a spoofing attack to unlock a smartphone on which a capacitive array of sensors had been embedded with a fingerprint recognition algorithm. Using an inkjet printer with an ink made of carbon nanotubes (CNTs), we printed a spoof fingerprint having an electrical and geometric pattern of ridges and furrows comparable to that of the real fingerprint. With this printed spoof fingerprint, we were able to unlock a smartphone successfully; this was due to the good quality of the printed CNT material, which provided electrical conductivities and structural patterns similar to those of the real fingerprint. This result confirms that inkjet-printing CNTs to fabricate a spoof fingerprint on paper is an easy, simple spoofing route from the real fingerprint and suggests a new method for outputting the physical ridges and furrows on a two-dimensional plane.
A simple programmable contact printing method using ballpoint pens with silver nanoparticle (AgNP) and carbon nanotube (CNT) ink and a digital plotter were developed for quick patterning of electrodes on paper. This printing method enables sequential and programmable printing with two different inks and with ink consisting of high viscosity materials and is amenable to reproducibility of printed electrodes and customized designs. With this printing method, AgNP and CNT patterns with low electrical resistance and high density of the material can be printed. Using these AgNP and CNT inks, we fabricated disposable electrochemical sensors (ECSs) on paper. The ECSs were successfully used to detect glucose at various concentrations from 0 to 15 mM. The characteristics of the printed AgNP and CNT patterns, such as the printing resolution, surface morphology, and electrical properties, were also studied. The proposed contact printing method opens an avenue for printing paper-based electronics and devices.
The effects of an immiscible, lubricating polydimethylsiloxane fluid, referred to as silicone oil, on the static deformation and on the dynamic motion of a water drop on paper induced by electrowetting were investigated. The deformation of a drop on a hydrophobic film of amorphous fluoropolymers top-coated with less hydrophobic silicone oil was much more predictable, reversible and reproducible than on the uncoated surface. In the dynamic tribological experiment for a sliding drop along an inclined surface, a significant decrease in the friction coefficient, with an unexpected dependency of the contact area, was observed. Based on the curve fitting analysis, the shear stress and the net friction force were estimated quantitatively. Because of the tribological effect and the reduced shear friction force of the oil film, the static and the dynamic electrowetting states of the water drop were enhanced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.