SynopsisUniform polystyrene particles in 1-10 p m size range and up to 40% solid contents have been prepared by polymerizing styrene in ethyl alcohol with am-type initiators and a polymeric stabilizer polyvinylpyrrolidone along with a n anionic, nonionic, or comonomeric co-stabilizer. Effects of polymerization parameters, such as monomer concentration, type of co-stabilizer, initiator type and concentration, crosslinking monomer, and diluent on average particle size and size distribution have been studied. Functional groups such as hydroxyl, carboxyl, amine, amide, silane, polydimethylsiloxane, and silacrown have been successfully incorporated onto the particles by copolymerization. A mechanism for particle formation and growth in dispersion polymerization is presented.
A three-dimensional (3D) graphene foam (GF)/poly(dimethylsiloxane) (PDMS) composite was fabricated by infiltrating PDMS into 3D GF, which was synthesized by chemical vapor deposition (CVD) with nickel foam as template. The electrical properties of the GF/PDMS composite under bending stress were investigated, indicating the resistance of the GF/PDMS composite was increased with the bending curvature. To improve the bending sensitivity of the GF/PDMS composite, a thin layer of poly(ethylene terephthalate) (PET) was introduced as substrate to form double-layer GF/PDMS-PET composite, whose measurements showed that the resistance of the GF/PDMS-PET composite was still increased when bended to the side of PET, whereas its resistance would be decreased when bended to the side of GF. For both cases, the absolute value of the relative variation of electrical resistance was increased with the bending curvature. More importantly, the relative variation of electrical resistance for double-layer GF/PDMS-PET composite can be up to six times higher than single-layer GF/PDMS composite for the same bending curvature. These observations were further supported by the principle of mechanics of material. The 3D GF/PDMS-PET composite also has higher flexibility and environment stability and can be utilized as a strain sensor with high sensitivity, which can find important applications in real-time monitoring of buildings, such as a bridge, dam, and high-speed railway.
A thermodynamic model has been proposed for the simulation of monomer partitioning behavior in the dispersion polymerization of styrene in ethanol. The monomer concentration in the polymer particles is very low (20 vol% at 5% conversion) and decreases further as the polymerization proceeds. It is independent of stabilizer concentration but is strongly dependent on initial monomer concentration. The partitio
n coefficient ([Mp]/[Mc]) of styrene increases from 0.8 to 1.1 with incresing conversion. There are two polymerization loci in dispersion polymerization, namely the continuous and polymer phases. Competition between solution and heterogeneous polymerization has been observed in this system. The rate of dispersion polymerization is dependent on initial monomer concentration but is independent of initiator concentration at higher conversions. The molecular weight of the polymers produced by this process increases with increasing conversion and decreases with increasing initiator concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.