The study aims to enhance β-amyrin production in Saccharomyces cerevisiae by peroxisome compartmentalization. First, overaccumulated squalene was determined as a key limiting factor for the production of β-amyrin since it could inhibit the activity of β-amyrin synthase GgbAs1. Second, to mitigate the inhibition effect, the enhanced squalene synthesis pathway was compartmentalized into peroxisomes to insulate overaccumulated squalene from GgbAs1, and thus the specific titer of β-amyrin reached 57.8 mg/g dry cell weight (DCW), which was 2.6-fold higher than that of the cytosol engineering strain. Third, by combining peroxisome compartmentalization with the "push-pull-restrain" strategy (ERG1 and GgbAs1 overexpression and ERG7 weakening), the production of β-amyrin was further increased to 81.0 mg/g DCW (347.0 mg/L). Finally, through fed-batch fermentation in a 5 L fermenter, the titer of β-amyrin reached 2.6 g/L, which is the highest reported to date. The study provides a new perspective to engineering yeasts as a platform for triterpene production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.