Genetic diversity analysis and cultivar identification were performed using a core set of single nucleotide polymorphisms (SNPs) in cucumber (Cucumis sativus L.). For the genetic diversity study, 280 cucumber accessions collected from four continents (Asia, Europe, America, and Africa) by the National Agrobiodiversity Center of the Rural Development Administration in South Korea and 20 Korean commercial F1 hybrids were genotyped using 151 Fluidigm SNP assay sets. The heterozygosity of the SNP loci per accession ranged from 4.76 to 82.76%, with an average of 32.1%. Population genetics analysis was performed using population structure analysis and hierarchical clustering (HC), which indicated that these accessions were classified mainly into four subpopulations or clusters according to their geographical origins. The subpopulations for Asian and European accessions were clearly distinguished from each other (FST value = 0.47), while the subpopulations for Korean F1 hybrids and Asian accessions were closely related (FST = 0.34). The highest differentiation was observed between American and European accessions (FST = 0.41). Nei’s genetic distance among the 280 accessions was 0.414 on average. In addition, 95 commercial F1 hybrids of three cultivar groups (Baekdadagi-, Gasi-, and Nakhap-types) were genotyped using 82 Fluidigm SNP assay sets for cultivar identification. These 82 SNPs differentiated all cultivars, except seven. The heterozygosity of the SNP loci per cultivar ranged from 12.20 to 69.14%, with an average of 34.2%. Principal component analysis and HC demonstrated that most cultivars were clustered based on their cultivar groups. The Baekdadagi- and Gasi-types were clearly distinguished, while the Nakhap-type was closely related to the Baekdadagi-type. Our results obtained using core Fluidigm SNP assay sets provide useful information for germplasm assessment and cultivar identification, which are essential for breeding and intellectual right protection in cucumber.
Trans-lycopene is a functional phytochemical abundant in red-fleshed watermelons, and its contents vary among cultivars. In this study, the genetic basis of high trans-lycopene contents in scarlet red flesh was evaluated. Three near-isogenic lines (NILs) with high trans-lycopene contents were derived from the scarlet red-fleshed donor parent DRD and three coral red-fleshed (low trans-lycopene contents) recurrent parents. The lycopene contents of DRD (589.4 ± 71.8 µg/g) were two times higher than that of the recurrent parents, and values for NILs were intermediate between those of the parents. Coral red-fleshed lines and F1 cultivars showed low trans-lycopene contents (135.7 ± 18.0 µg/g to 213.7 ± 39.5 µg/g). Whole-genome resequencing of two NILs and their parents and an analysis of genome-wide single-nucleotide polymorphisms revealed three common introgressed regions (CIRs) on chromosomes 6, 9, and 10. Twenty-eight gene-based cleaved amplified polymorphic sequence (CAPS) markers were developed from the CIRs. The CAPS markers derived from CIR6 on chromosome 6, spanning approximately 1 Mb, were associated (R2 = 0.45–0.72) with the trans-lycopene contents, particularly CIR6-M1 and CIR6-M4. Our results imply that CIR6 is a major genomic region associated with variation in the trans-lycopene contents in red-fleshed watermelon, and CIR6-M1 and CIR6-M4 may be useful for marker-assisted selection.
Powdery mildew (PM), caused by Oidium spp. in tomato, is a global concern that leads to diminished yield. We aimed to evaluate previously reported DNA markers linked to powdery mildew resistance (PMR) and identify novel quantitative trait loci (QTLs) for PMR through a genome-wide association study in tomato. Sequencing analysis of the internal transcribed spacer (ITS) of a PM strain (PNU_PM) isolated from Miryang, Gyeongnam, led to its identification as Oidium neolycopersici. Thereafter, a PM bioassay was conducted for a total of 295 tomato accessions, among which 24 accessions (4 S. lycopersicum accessions and 20 accessions of seven wild species) showed high levels of resistance to PNU_PM. Subsequently, we genotyped 11 markers previously linked to PMR in 56 accessions. PMR-specific banding patterns were detected in 15/22 PMR accessions, while no such bands were observed in the powdery mildew-susceptible accessions. The genome-wide association study was performed using TASSEL and GAPIT, based on the phenotypic data of 290 accessions and 11,912 single nucleotide polymorphisms (SNPs) obtained from the Axiom® Tomato SNP Chip Array. Nine significant SNPs in chromosomes 1, 4, 6, 8, and 12, were selected and five novel QTL regions distinct from previously known PMR-QTL regions were identified. Of these QTL regions, three putative candidate genes for PMR were selected from chromosomes 4 and 8, including two nucleotide binding site-leucine rich repeat class genes and a receptor-like kinase gene, all of which have been identified previously as causative genes for PMR in several crop species. The SNPs discovered in these genes provide useful information for understanding the molecular basis of PMR and developing DNA markers for marker-assisted selection of PMR in tomato.
For the long-term preservation of genetic resources, cryopreservation techniques have been developed for strawberry germplasm, mainly using in vitro-grown shoot tips. In this study, genetic stability was tested under greenhouse conditions for six strawberry accessions (IT232511, PHS0132, IT245810, IT245830, IT245852, and IT245860) derived from the following procedures: (1) conventional propagation (GH: greenhouse maintained); (2) in vitro propagation (TC: tissue culture); (3) pretreatment before cryopreservation (−LN: non-liquid nitrogen exposure); and (4) cryopreservation (+LN: liquid nitrogen exposure). To test the performance of phenotypic traits, we measured six vegetative and five fruit traits. There were no distinct differences in most of the characteristics, but a few traits, such as sugar content and pH of fruits in three accessions, showed higher values in +LN compared to GH. However, the differences disappeared in the first runner generation. To test genetic variations, a total of 102 bands were generated by twelve inter simple sequence repeat (ISSR) primers. A few polymorphic bands were found only in plants derived from TC of IT245860, which was not cryopreserved. The sequencing analysis of four polymorphic bands produced by ISSR_15 showed that none of these sequences matched the characterized genes in NCBI. Phenotypic abnormality was not observed across all plants. This study indicates that cryopreserved plants of the six strawberry accessions are phenotypically and genetically stable. Therefore, the results of this study can help to implement cryobanking of strawberry germplasm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.