Field monitoring in the process of excavation of foundation pit is an important measure to reduce the risk. This paper describes a case study of the filed monitoring data during the process of deep foundation pit excavation in soft soil areas. The displacements of the diaphragm wall top were analysed and found that the horizontal displacement showed the convex shape, while the vertical displacement showed the concave shape. Based on the field monitoring data, the deformation mode of lateral displacement of the diaphragm wall belonged to the composite mode. The relationship between maximum lateral displacement and excavation depth showed a strong linear correlation. The horizontal displacements of bracing pillar decreased with the increasing of bracing stiffness, while the effect of bracing stiffness on vertical displacements of bracing pillar could be ignored. The settlement profile computed using the method of Hsieh and Ou was in good agreement with the field observations and better described the development trend of the ground surface settlement. The ratio of the maximum ground surface settlement (δvm) to the maximum lateral displacement of the diaphragm wall (δhm) was in the range of 0.74∼0.88, belonging to the range of 0.5∼1.0 proposed by Hsieh and Ou. This paper provides a reference basis and related guidance for similar projects.
This study aimed to determine the effect of circulating fluidised bed bottom ash (CFB-BA) content on the mechanical properties and drying shrinkage of cement-stabilised soil. Experiments were performed to study the changes in unconfined compressive strength and expansibility of cement-stabilised soil with different CFB-BA contents and the underlying mechanisms based on microscopic properties. The results show that CFB-BA can effectively increase the unconfined compressive strength of the specimen and reduce the amount of cement in the soil. When the combined content of CFB-BA and cement in the soil was 30%, the unconfined compressive strength of the specimen with C/CFB = 2 after 60 days of curing was 10.138 MPa, which is 1.4 times that of the pure cement specimen. However, the CFB-BA does not significantly improve the strength of the soil and cannot be added alone as a cementing material to the soil. Additionally, swelling tests showed that the addition of CFB-BA to cement-stabilised soil can significantly reduce the drying shrinkage. This research project provides reference values for the application of CFB-BA in cement–soil mixing piles, including compressive strength and the reduction in the shrinkage deformation of specimens.
Dynamic compaction is a cost-effective foundation treatment technology, that is widely used in various types and conditions of foundations. However, due to the limitation of natural conditions (water content between 3% and 8%) in north-western China, it is difficult to meet the requirements of the optimal water content during dynamic compaction. To better treat a foundation with a low water content, a series of model tests were carried out by using homemade test equipment to study the influence of the ramming energy and η value on the efficiency of dynamic compaction under a low water content. The results showed that the improvement of the energy level could compensate for the poor effect of dynamic compaction caused by a low water content in arid regions. Compared with that at the optimal water content, the efficiency of dynamic compaction was 58.1% to 66.2% at a low water content and excited the optimal energy level. Increasing the η value was also beneficial to improving the effect of dynamic compaction. Hence, the optimal energy level combined with the appropriate η value is of great merit in treating the foundation of arid regions by using the dynamic compaction method, which provides new parameter suggestions and engineering guidance for dynamic compaction construction in arid areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.