T cells play important roles in various immune reactions, and their activation is necessary for cancer immunotherapy. Previously, we showed that polyamidoamine (PAMAM) dendrimers modified with 1,2-cyclohexanedicarboxylic acid (CHex) and phenylalanine (Phe) underwent effective uptake by various immune cells, including T cells and their subsets. In this study, we synthesized various carboxy-terminal dendrimers modified with different bound numbers of Phe and investigated the association of these dendrimers with T cells to evaluate the influence of terminal Phe density. Carboxy-terminal dendrimers conjugating Phe at more than half of the termini exhibited a higher association with T cells and other immune cells. The carboxy-terminal Phe-modified dendrimers at 75% Phe density tended to exhibit the highest association with T cells and other immune cells, which was related to their association with liposomes. A model drug, protoporphyrin IX (PpIX), was encapsulated into carboxy-terminal Phe-modified dendrimers, which were then used for drug delivery into T cells. Our results suggest the carboxy-terminal Phe-modified dendrimers are useful for delivery into T cells.
Stimuli-sensitive materials, such as pH- and temperature-responsive polymers, are useful as smart materials. Phenylalanine (Phe)-modified polyamidoamine (PAMAM) dendrimers with succinic acid termini, PAMAM-Phe-Suc, have been reported as unique pH-switchable lower critical solution temperature (LCST)-/upper critical solution temperature (UCST)-type thermosensitive polymers. Regulating the phase transition behavior of dendrimers is important for their applications. This study investigated the relationship between the dendrimer structure and stimuli sensitivity. Phe-modified PAMAM dendrimers with cyclohexanedicarboxylate termini (PAMAM-Phe-CHex) and sulfonate termini (PAMAM-Phe-SO3Na) were synthesized. The temperature-dependent transmittance of these aqueous dendrimer solutions was examined at various pH values. PAMAM-Phe-CHex with Phe at all termini (PAMAM-Phe64-CHex) demonstrated a broad UCST-like phase transition at pH 7.0 but lacked an LCST-type phase transition. PAMAM-Phe-CHex with ≤ 27 Phe residues showed both LCST- and UCST-like phase transitions at different pH values, but the phase transition was broad. PAMAM-Phe-SO3Na showed both LCST- and UCST-type phase transitions at different pH values, and the transition temperature increased as the bound Phe number decreased. Thus, the phase transition behavior of PAMAM-Phe-SO3Na dendrimers can be regulated by varying the Phe/PAMAM ratios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.