Summary
Parkinson’s disease (PD), an adult neurodegenerative disorder, has been clinically linked to lysosomal storage disorder, Gaucher disease (GD), but the mechanistic connection has been unknown. Here, we show that functional loss of GD-linked glucocerebrosidase (GCase) in primary cultures or human iPS neurons compromises lysosomal protein degradation, causes accumulation of a-synuclein (a-syn), and results in neurotoxicity through aggregation dependent mechanisms. GlcCer, the GCase substrate, directly influenced amyloid formation of purified a-syn by stabilizing soluble oligomeric intermediates. We further demonstrate that a-syn inhibits the lysosomal activity of normal GCase in neurons and idiopathic PD brain, suggesting that GCase depletion contributes to the pathogenesis of sporadic synucleinopathies. These findings suggest that the bidirectional effect of a-syn and GCase forms a positive feedback loop that may lead to a self-propagating disease. Therefore, improved targeting of GCase to lysosomes may represent a specific therapeutic approach for PD and other synucleinopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.