Hematopoietic stem and progenitor cells (HSPCs) are capable of producing all mature blood lineages, as well as maintaining the self-renewal ability throughout life. The hairy-like organelle, cilium, is present in most types of vertebrate cells, and plays important roles in various biological processes. However, it is unclear whether and how cilia regulate HSPC development in vertebrates. Here, we show that cilia-specific genes, involved in primary cilia formation and function, are required for HSPC development, especially in hemogenic endothelium (HE) specification in zebrafish embryos. Blocking primary cilia formation or function by genetic or chemical manipulations impairs HSPC development. Mechanistically, we uncover that primary cilia in endothelial cells transduce Notch signal to the earliest HE for proper HSPC specification during embryogenesis. Altogether, our findings reveal a pivotal role of endothelial primary cilia in HSPC development, and may shed lights into in vitro directed differentiation of HSPCs.
E2f5 is a member of the E2f family of transcription factors that play essential roles during many cellular processes. E2f5 was initially characterized as a transcriptional repressor in cell proliferation studies through its interaction with the Retinoblastoma (Rb) protein for inhibition of target gene transcription. However, the precise roles of E2f5 during embryonic and post-embryonic development remain incompletely investigated. Here, we report that zebrafish E2f5 plays critical roles during spermatogenesis and multiciliated cell (MCC) differentiation. Zebrafish e2f5 mutants develop exclusively as infertile males. In the mutants, spermatogenesis is arrested at the zygotene stage due to homologous recombination (HR) defects, which finally leads to germ cell apoptosis. Inhibition of cell apoptosis in e2f5; tp53 double mutants rescued ovarian development, although oocytes generated from the double mutants were still abnormal, characterized by aberrant distribution of nucleoli. Using transcriptome analysis, we identified dmc1, which encodes an essential meiotic recombination protein, as the major target gene of E2f5 during spermatogenesis. E2f5 can bind to the promoter of dmc1 to promote HR, and overexpression of dmc1 significantly increased the fertilization rate of e2f5 mutant males. Besides gametogenesis defects, e2f5 mutants failed to develop MCCs in the nose and pronephric ducts during early embryonic stages, but these cells recovered later due to redundancy with E2f4. Moreover, we demonstrate that ion transporting principal cells in the pronephric ducts, which remain intercalated with the MCCs, do not contain motile cilia in wild-type embryos, while they generate single motile cilia in the absence of E2f5 activity. In line with this, we further show that E2f5 activates the Notch pathway gene jagged2b (jag2b) to inhibit the acquisition of MCC fate as well as motile cilia differentiation by the neighboring principal cells. Taken together, our data suggest that E2f5 can function as a versatile transcriptional activator and identify PLOS GENETICS
Photoreceptor degeneration can lead to blindness and represents the most common form of neural degenerative disease worldwide. Although many genes involved in photoreceptor degeneration have been identified, the underlying mechanisms remain to be elucidated. Here we examined photoreceptor development in zebrafish and mutants, which affect two subunits of the kinesin-2 complex. In both mutants, rods degenerated quickly, whereas cones underwent a slow degeneration process. Notably, the photoreceptor defects were considerably more severe in mutants than in mutants. In the cone photoreceptors of mutants, opsin proteins accumulated in the apical region and formed abnormal membrane structures. In contrast, rhodopsins were enriched in the rod cell body membrane and represented the primary reason for rapid rod degeneration in these mutants. Moreover, removal of the cytoplasmic tail of rhodopsin to reduce its function, but not decreasing rhodopsin expression levels, prevented rod degeneration in both and mutants. Of note, overexpression of full-length rhodopsin or its cytoplasmic tail domain, but not of rhodopsin lacking the cytoplasmic tail, exacerbated rod degeneration in mutants, implying an important role of the cytoplasmic tail in rod degeneration. Finally, we showed that the cytoplasmic tail of rhodopsin might trigger rod degeneration through activating the downstream calcium signaling pathway, as drug treatment with inhibitors of intracellular calcium release prevented rod degeneration in mutants. Our results demonstrate a previously unknown function of the rhodopsin cytoplasmic domain during opsin-triggered photoreceptor degeneration and may open up new avenues for managing this disease.
Meiosis is essential for evolution and genetic diversity in almost all sexual eukaryotic organisms. The mechanisms of meiotic recombination, such as synapsis, have been extensively investigated. However, it is still unclear whether signals from the cytoplasm or even from outside of the cell can regulate the meiosis process. Cilia are microtubule-based structures that protrude from cell surface and function as signaling hubs to sense extracellular signals. Here, we reported an unexpected and critical role of cilia during meiotic recombination. During gametogenesis of zebrafish, cilia were specifically present in the prophase stages of both primary spermatocytes and primary oocytes. By developing a germ cell-specific CRISPR/Cas9 system, we demonstrated that germ cell-specific depletion of ciliary genes resulted in compromised double-strand break repair, reduced crossover formation, and increased germ cell apoptosis. Our study reveals a previously undiscovered role for cilia during meiosis and suggests that extracellular signals may regulate meiotic recombination via this particular organelle.
Scoliosis is a common spinal deformity that considerably affects the physical and psychological health of patients. Studies have shown that genetic factors play an important role in scoliosis. However, its etiopathogenesis remain unclear, partially because of the genetic heterogeneity of scoliosis and the lack of appropriate model systems. Recently, the development of efficient gene editing methods and high-throughput sequencing technology has made it possible to explore the underlying pathological mechanisms of scoliosis. Owing to their susceptibility for developing scoliosis and high genetic homology with human, zebrafish are increasingly being used as a model for scoliosis in developmental biology, genetics, and clinical medicine. Here, we summarize the recent advances in scoliosis research on zebrafish and discuss the prospects of using zebrafish as a scoliosis model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.