Nanobubble technology, as an emerging and sustainable approach, has been used for remediation of eutrophication. However, the influence of nanobubbles on the restoration of aquatic vegetation and the mechanisms are unclear. In this study, the effect of nanobubbles at different concentrations on the growth of Iris pseudacorus (Iris) and Echinodorus amazonicus (Echinodorus) was investigated. The results demonstrated that nanobubbles can enhance the delivery of oxygen to plants, while appropriate nanobubble levels will promote plant growth, excess nanobubbles could inhibit plant growth and photosynthesis. The nanobubble concentration thresholds for this switch from growth promotion to growth inhibition were 3.45×10 7 and 1.23×10 7 particles/mL for Iris and Echinodorus, respectively. Below the threshold, an increase in nanobubble concentration enhanced plant aerobic respiration and ROS generations in plants, resulting in superior plant growth. However, above the threshold, high nanobubble concentrations induced hyperoxia stress, particularly in submergent plants, which result in collapse of the antioxidant system and the inhibition of plant physiological activity. The 2 expression of genes involved in modulating redox potential and the oxidative stress response, as well as the generation of relevant hormones, were also altered. Overall, this study provides an evidence-based strategy to guide the future application of nanobubble technology for sustainable management of natural waters.
Lignin/tannin/ZnONP composite coatings were designed for paper-based green packaging. Multiple functions, such as high strength, moisture resistance, low air permeance, heat endurance, UV aging resistance, and antibacterial/mold properties, were successfully integrated into one biobased coating. Prepolymerization improved the physical properties of coatings at high lignin contents. The best ingredient ratio was: 40% lignin, 15% tannin, and 10% ZnONPs (based on tannin weight), and the as-prepared biocoating was labeled LTZn-10. After coated with LTZn-10, the tensile strength and bursting strength of the packaging were efficiently enhanced by more than 3 times and were dramatically increased by 51.6 and 5.6 times at the wet state, respectively, which reveals that the packaging has favorable moisture resistance and it can be used in high humidity environments. Scanning electron microscopy (SEM) proved that most of the pores on the paper were blocked by the coatings, which helped to decrease the air permeance by 10.3 times. Meanwhile, ZnONPs were evenly spread on the coatings, which endowed the packaging with excellent antibacterial/mold performance. No colony or mycelium was found in the test against Gram-negative/positive bacteria and eight common molds. Besides, antibacterial activity is only available while the bacteria come in contact with the coating and no active substances were released into the culture medium, which is a good property that can keep the cargo from contamination of antibacterial agents. In addition, the coated paper presented an improved T g and thermal degradation temperature, indicating that the coated package has favorable thermostability and can maintain its outstanding physical properties in a wider temperature range. Lignin and tannin promoted the UV stability and service life of the coated paper, as a rare physical decrease was observed after UV aging for 72 h. The function-integrated biobased coating with favorable sustainability is a good candidate to be widely used in paperbased green packaging fields.
In underground engineering practice, the surrounding rocks are subjected to a nonuniform stress field with various radial gradients. In this study, a series of conventional triaxial repetitive impact tests using hollow cylindrical sandstone (HOS) specimens were conducted to reveal the impact waveform features and failure properties of rocks under nonuniform stress conditions. The tests were conducted using a modified large diameter split Hopkinson pressure bar (SHPB) testing system. The confining pressure was set as 5, 10 and 12 MPa. The data of specimens under equilibrium stress states were chosen and analyzed, and the results showed that more applied numbers of cyclic impact loads were needed to break rocks with the increase of confining pressure. Three types of cracks, i.e., ring-shaped cracks around the hole in the center of specimens, axial cracks located in the outer cylindrical surface, and lateral cracks fracturing rock fragments into small pieces appeared in HOS specimens. The failure degrees of HOS specimens could be judged by the waveform features of the reflected wave, and the waveform features of reflected wave are similar in the same failure mode, regardless of the impact velocity and the number of impacts, which only affect the failure degree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.