Multienzyme whole-cell biocatalysts are preferred in industrial applications, and two major concerns regarding the use of these biocatalysts, cell viability and cell membrane integrity, must be addressed. In this work, the transformation of myricetin to myricetin-7-O-glucuronide catalyzed by an engineered Escherichia coli strain was taken as the model reaction to examine the impacts of low-level organic solvents on whole-cell biocatalysis. Low-level organic solvents (2%, v/v) showed a significant increase (roughly 13-fold) in myricetin-7-O-glucuronide yields. No obvious compromises of cellular viability and integrity were observed by a flow cytometry assay or in the determination of extracellular protein leakage, suggesting the addition of low-level organic solvents accommodates whole E. coli cells. Furthermore, a scaled-up reaction was conducted to test the capability and efficiency of whole-cell catalysis in the presence of organic solvents. This study presents a promising and simple means to enhance the productivity of multienzyme whole-cell catalysis without losing the barrier functions of the cell membrane.
Two versatile UDP-glucosyltransferases, UGT75L25 and UGT75X1, were isolated from Erigeron breviscapus. The enzymes display high sequence identity to flavonoid 7-O-glucosyltransferase from Malus species and cluster to the phylogenetic group L of plant glucosyltransferases, also involved in the formation of hydroxycinnamoyl glucose esters, which are used as bifunctional donors in the glucosylation or acylation of anthocyanins. The enzymes, functionally expressed in Escherichia coli, exhibit broad substrate specificity toward 21 structurally diverse types of phenolic acids, including (hydroxy)cinnamates, vanillic acid, 3-hydroxycoumarin, and 7-hydroxyflavonoids. The catalytic characteristics of UGT75L25 and UGT75X1 were exploited to generate the corresponding acyl-glucose-esters or glucosides with high efficiency. These findings demonstrate the significant potential of acyl-glucose-esters in the further enzymatic synthesis of bioactive anthocyanins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.