This paper studies the performance of microgrooved cutting tool in dry orthogonal machining of mild steel (AISI 1045 steel) using advantedge finite element simulation. Microgrooves are designed on the rake face of cemented carbide (WC/Co) cutting inserts. The purpose is to examine the effect of microgroove textured tools on machining performance and to compare it with nontextured cutting tools. Specifically, the following groove parameters are examined: groove width, groove depth, and edge distance (the distance from cutting edge to the first groove). Their effects are assessed in terms of the main force, thrust force, and chip–tool contact length. It is found that microgrooved cutting tools generate lower cutting force and thrust force, and consequently lower the energy necessary for machining. The groove width, groove depth, and edge distance all have influence on cutting force in their own ways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.