Abstract-The apoE knockout (E0) mouse is one of the most widely used animal models of atherosclerosis, and there may be similarities to chylomicron remnant-induced atherosclerosis in humans. Although the lesions of these mice contain large numbers of cholesteryl ester (CE)-laden macrophages (foam cells), E0 plasma lipoproteins are relatively weak inducers of cholesterol esterification in macrophages. Previous in vivo work has suggested that arterial wall sphingomyelinase (SMase) may promote atherogenesis in the E0 mouse, perhaps by inducing subendothelial lipoprotein aggregation and subsequent foam cell formation. The goal of the present study was to test the hypothesis that the modification of E0 lipoproteins by SMase converts these lipoproteins into potent inducers of macrophage foam cell formation. When dϽ1.063 E0 lipoproteins were pretreated with SMase and then incubated with E0 macrophages, cellular CE mass and stimulation of the cholesterol esterification pathway were increased Ϸ5-fold compared with untreated lipoproteins. SMase-treated E0 lipoproteins were more potent stimulators of cholesterol esterification than either E0 lipoproteins in the presence of lipoprotein lipases or oxidized E0 lipoproteins. The uptake and degradation of SMase-treated E0 lipoproteins by macrophages were saturable and specific and substantially inhibited by partial proteolysis of cell-surface proteins. Uptake and degradation were diminished by an anti-apoB antibody and by competition with human S f 100-400 hypertriglyceridemic VLDL, raising the possibility that a receptor that recognizes apoB-48 might be involved. In conclusion, SMase-modification of E0 lipoproteins, a process previously shown to occur in lesions, may be an important mechanism for foam cell formation in this widely studied model of atherosclerosis. Moreover, the findings in this report may provide important clues regarding the atherogenicity of chylomicron remnants in humans.
Sensors for imaging brain activity have been under development for almost 50 years. The development of some of these tools is relatively mature, whereas qualitative improvements of others are needed and are actively pursued. In particular, genetically encoded voltage indicators are just now starting to be used to answer neurobiological questions and, at the same time, more than 10 laboratories are working to improve them. In this Biophysical Perspective, we attempt to discuss the present state of the art and indicate areas of active development.
The yeast α-factor pheromone receptor (Ste2) belongs to the family of G protein-coupled receptors (GPCRs) that contain seven transmembrane domains. To define the residues that are accessible to the cytoplasmic G protein, Cys scanning mutagenesis was carried out in which each of the residues that span the intracellular loops and the cytoplasmic end of transmembrane domain 7 were substituted with Cys. The 90 different Cys-substituted residues were then assayed for reactivity with MTSEAbiotin (2-([biotinoyl] amino) ethyl methanethiosulfonate), which reacts with solvent accessible sulfhydryl groups. As part of these studies we show that adding free Cys to stop the MTSEA-biotin reactions has potential pitfalls in that Cys can rapidly undergo disulfide exchange with the biotinylated receptor proteins at pH ≥7. The central regions of the intracellular loops of Ste2 were all highly accessible to MTSEA-biotin. Residues near the ends of the loops typically exhibited a drop in the level of reactivity over a consecutive series of residues that was inferred to be the membrane boundary. Interestingly, these boundary residues were enriched in hydrophobic residues, suggesting that they may form a hydrophobic pocket for interaction with the G protein. Comparison with accessibility data from a previous study of the extracellular side of Ste2 indicates that the transmembrane domains vary in length, consistent with some transmembrane domains being tilted relative to the plane of the membrane as they are in rhodopsin. Altogether, these results define the residues that are accessible to the G protein and provide an important structural framework for the interpretation of the role of Ste2 residues that function in G protein activation.The S. cerevisiae α-factor pheromone receptor (Ste2) belongs to the large family of Gproteincoupled receptors (GPCRs) that transduce the signals for light, taste, olfaction, and many biomedically important hormones. Although GPCRs are quite diverse in sequence, they function in a similar manner to activate the α subunit of heterotrimeric G proteins to bind GTP and they also show similar structural architecture in that they are composed of a bundle of seven transmembrane domains (TMDs) connected by extracellular loops and intracellular loops (1,2). Ste2 shows overall similarity to many mammalian GPCRs in that the core region containing the TMDs is involved in signal transduction and the C terminal tail is a target for † This work was supported by National Institutes of Health Grant GM55107 awarded to J.B.K. post-translational modifications that regulate receptor desensitization and endocytosis (3). Ste2 activates a heterotrimeric G protein in which the α subunit shows about 45% identity with mammalian Gα proteins and is most closely related to the Gi subfamily (4). In addition, comparison of Ste2 with rhodopsin, a member of the large class A subfamily of mammalian GPCRs, indicates that there are similar microdomains in these divergent receptors (5). These results suggest that there are underlying ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.