SUMMARYFlowering time is one of the major adaptive traits in domestication of maize and an important selection criterion in breeding. To detect more maize flowering time variants we evaluated flowering time traits using an extremely large multi-genetic background population that contained more than 8000 lines under multiple Sino-United States environments. The population included two nested association mapping (NAM) panels and a natural association panel. Nearly 1 million single-nucleotide polymorphisms (SNPs) were used in the analyses. Through the parallel linkage analysis of the two NAM panels, both common and unique flowering time regions were detected. Genome wide, a total of 90 flowering time regions were identified. One-third of these regions were connected to traits associated with the environmental sensitivity of maize flowering time. The genome-wide association study of the three panels identified nearly 1000 flowering time-associated SNPs, mainly distributed around 220 candidate genes (within a distance of 1 Mb). Interestingly, two types of regions were significantly enriched for these associated SNPs -one was the candidate gene regions and the other was the approximately 5 kb regions away from the candidate genes. Moreover, the associated SNPs exhibited high accuracy for predicting flowering time.
To investigate the genetic structure of Chinese maize germplasm, the MaizeSNP50 BeadChip with 56,110 single nucleotide polymorphisms (SNPs) was used to genotype a collection of 367 inbred lines widely used in maize breeding of China. A total of 41,819 informative SNPs with minor allele number of more than 0.05 were used to estimate the genetic diversity, relatedness, and linkage disequilibrium (LD) decay. Totally 1,015 SNPs evenly distributed in the genome were selected randomly to evaluate the population structure of these accessions. Results showed that two main groups could be determined i.e., the introduced germplasm and the local germplasm. Further, five subgroups corresponding to different heterotic groups, that is, Reid Yellow Dent (Reid), Lancaster Sure Crop (Lancaster), P group (P), Tang Sipingtou (TSPT), and Tem-tropic I group (Tem-tropic I), were determined. The genetic diversity of within subgroups was highest in the Tem-Tropic I and lowest in the P. Most lines in this panel showed limited relatedness with each other. Comparisons of gene diversity showed that there existed some conservative genetic regions in specific subgroups across the ten chromosomes, i.e., seven in the Lancaster, seven in the Reid, six in the TSPT, five in the P, and two in the Tem-Tropical I. In addition, the results also revealed that there existed fifteen conservative regions transmitted from Huangzaosi, an important foundation parent, to its descendants. These are important for further studies since the outcomes may provide clues to understand why Huangzaosi could become a foundation parent in Chinese maize breeding. For the panel of 367 elite lines, average LD distance was 391 kb and varied among different chromosomes as well as in different genomic regions of one chromosome. This analysis uncovered a high natural genetic diversity in the elite maize inbred set, suggesting that the panel can be used in association study, esp. for temperate regions.
The objectives of this study were to (i) measure genetic gain using a set of maize (Zea mays L.) single‐cross hybrids that were widely used in Chinese maize production from 1964 to 2001, (ii) determine if there were changes in morphological characteristics, and (iii) examine the germplasm backgrounds of these hybrids. Yield trials were conducted for 3 yr, using a split‐plot design. Each hybrid was planted at three different densities in four locations, two locations each representing summer and spring corn areas. Mean rates of genetic gain were 52 kg ha−1 yr−1 when measured at the spring locations, 69 kg ha−1 yr−1 when measured at the summer locations, and 60 kg ha−1 yr−1 when measured across all locations. There was no significant effect of planting density on genetic gain. Genetic gain has been largely contributed by increased yield per plant and this strategy was reflected in changes in ear and plant morphology. Analyses of pedigree backgrounds showed continuing dependence on U.S. germplasm backgrounds, notably C103, Oh43, Mo17, and Iowa Stiff Stalk Synthetic (BSSS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.