A solution-based process was investigated for synthesizing cubic Li7La3Zr2O12 (LLZO), which is known to exhibit the unprecedented combination of fast ionic conductivity, and stability in air and against Li. Sol-gel chemistry was developed to prepare solid metal-oxide networks consisting of 10 nm cross-links that formed the cubic LLZO phase at 600 ° C. Sol-gel LLZO powders were sintered into 96% dense pellets using an induction hot press that applied pressure while heating. After sintering, the average LLZO grain size was 260 nm, which is 13 times smaller compared to LLZO prepared using a solid-state technique. The total ionic conductivity was 0.4 mS cm(-1) at 298 K, which is the same as solid-state synthesized LLZO. Interestingly, despite the same room temperature conductivity, the sol-gel LLZO total activation energy is 0.41 eV, which 1.6 times higher than that observed in solid-state LLZO (0.26 eV). We believe the nano-scale grain boundaries give rise to unique transport phenomena that are more sensitive to temperature when compared to the conventional solid-state LLZO.
The electrochemical stability of Li6.5La3Zr1.5Nb0.5O12 (LLZNO) and Li6.5La3Zr1.5Ta0.5O12 (LLZTO) against metallic Li was studied using direct current (DC) and electrochemical impedance spectroscopy (EIS). Dense polycrystalline LLZNO (ρ = 97%) and LLZTO (ρ = 92%) were made using sol-gel synthesis and rapid induction hot-pressing at 1100°C and 15.8 MPa. During DC cycling tests at room temperature (± 0.01 mA/cm 2 for 36 cycles), LLZNO exhibited an increase in Li-LLZNO interface resistance and eventually short-circuiting while the LLZTO was stable. After DC cycling, LLZNO appeared severely discolored while the LLZTO did not change in appearance. We believe the increase in Li-LLZNO interfacial resistance and discoloration are due to reduction of Nb 5+ to Nb 4+ . The negligible change in interfacial resistance and no color change in LLZTO suggest that Ta 5+ may be more stable against reduction than Nb 5+ in cubic garnet versus Li during cycling.
The effect of relative density on the hardness and fracture toughness of Al-substituted cubic garnet Li 6.19 Al 0.27 La 3 Zr 2 O 12 (LLZO) was investigated. Polycrystalline LLZO was made using solid-state synthesis and hot-pressing. The relative density was controlled by varying the densification time at fixed temperature (1050°C) and pressure (62 MPa). After hotpressing, the average grain size varied from approximately 2.7-3.7 lm for the 85% and 98% relative density samples, respectively. Examination of fracture surfaces revealed a transition from inter-to intragranular fracture as the relative density increased. The Vickers hardness increased with relative density up to 96%, above which the hardness was constant. At 98% relative density, the Vickers hardness was equal to the hardness measured by nanoindentation 9.1 GPa, which is estimated as the single-crystal hardness value. An inverse correlation between relative density and fracture toughness was observed. The fracture toughness increased linearly from 0.97 to 2.37 MPa√m for the 98% and 85% relative density samples, respectively. It is suggested that crack deflection along grain boundaries can explain the increase in fracture toughness with decreasing relative density. It was also observed that the total ionic conductivity increased from 0.0094 to 0.34 mS/cm for the 85%-98% relative density samples, respectively. The results of this study suggest that the microstructure of LLZO must be optimized to maximize mechanical integrity and ionic conductivity.
Since the first reports of SARS-CoV-2 infection from China, multiple studies have been published regarding the epidemiologic aspects of COVID-19 including clinical manifestations and outcomes. The majority of these studies have focused on respiratory complications. However, recent findings have highlighted the systemic effects of the virus, including its potential impact on the nervous system. Similar to SARS-CoV-1, cellular entry of SARS-CoV-2 depends on the expression of ACE2, a receptor that is abundantly expressed in the nervous system. Neurologic manifestations in adults include cerebrovascular insults, encephalitis or encephalopathy, and neuromuscular disorders. However, the presence of these neurologic findings in the pediatric population is unclear. In this review, the potential neurotropism of SARS-CoV-2, known neurologic manifestations of COVID-19 in children, and management of preexisting pediatric neurologic conditions during the COVID-19 pandemic are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.