An effective forest-fire response is critical for minimizing the losses caused by forest fires. The purpose of this study is to construct a model for early fire detection and damage area estimation for response systems based on deep learning. First, a large-scale fire dataset with approximately 400,000 images is used to train and test object-detection models. The optimal backbone for the faster region-based convolutional neural network (Faster R-CNN) model is determined using a DetNAS-based architecture search algorithm. Then, the searched light-weight backbone is compared with well-known backbones, such as ResNet, VoVNet, and FBNetV3. In addition, data pertaining to six years of historical forest fire events are employed to estimate the damaged area. Subsequently, a weather API is used to match the recorded events. A Bayesian neural network (BNN) model is used as a regression model to estimate the damaged area. Additionally, the trained model is compared with other widely used regression models, such as decision trees and neural networks. The Faster R-CNN with a searched backbone achieves a mean average precision of 27.9 on 40,000 testing images, outperforming existing backbones. Compared with other regression models, the BNN estimates the damage area with less error and increased generalization. Thus, both proposed models demonstrate their robustness and suitability for implementation in real-world systems. INDEX TERMSForest-fire management, Deep learning, Bayesian neural network, Object detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.