Focal mechanism and dynamic rupture process of the Wenchaun M s 8.0 earthquake in Sichuan province on 12 May 2008 were obtained by inverting long period seismic data from the Global Seismic Network (GSN), and characteristics of the co-seismic displacement field near the fault were quantitatively analyzed based on the inverted results to investigate the mechanism causing disaster. A finite fault model with given focal mechanism and vertical components of the long period P-waves from 21 stations with evenly azimuthal coverage were adopted in the inversion. From the inverted results as well as aftershock distribution, the causative fault of the great Wenchuan earthquake was confirmed to be a fault of strike 225°/dip 39°/rake 120°, indicating that the earthquake was mainly a thrust event with right-lateral strike-slip component. The released scalar seismic moment was estimated to be about 9.4×10 20 -2.0×10 21 Nm, yielding moment magnitude of M w 7.9-8.1. The great Wenchuan earthquake occurred on a fault more than 300 km long, and had a complicated rupture process of about 90 s duration time. The slip distribution was highly inhomogeneous with the average slip of about 2.4 m. Four slip-patches broke the ground surface. Two of them were underneath the regions of Wenchuan-Yingxiu and Beichuan, respectively, with the first being around the hypocenter (rupture initiation point), where the largest slip was about 7.3 m, and the second being underneath Beichuan and extending to Pingwu, where the largest slip was about 5.6 m. The other two slip-patches had smaller sizes, one having the maximum slip of 1.8 m and lying underneath the north of Kangding, and the other having the maximum slip of 0.7 m and lying underneath the northeast of Qingchuan. Average and maximum stress drops over the whole fault plane were estimated to be 18 MPa and 53 MPa, respectively. In addition, the co-seismic displacement field near the fault was analyzed. The results indicate that the features of the co-seismic displacement field were coincident with those of the intensity distribution in the meizoseismal area, implying that the large-scale, large-amplitude and surface-broken thrust dislocation should be responsible for the serious disaster in the near fault area.Wenchuan earthquake, earthquake rupture process, co-seismic displacement As reported by China Seismograph Network Center (CSNC), an earthquake of M s 8.0 occurred near Yingxiu town (31.0°N, 103.4°E, focal depth: 15 km) of Wenchuan County, Sichuan Province, at 14: 28: 04 (Beijing Time), 12 May 2008. The earthquake resulted in large-scale landslides and debris flows, silting of rivers, and more than 3000 barrier lakes (Satellite images in Figures 1 (a), (b) and (c)), and seriously damaged more than one hundred of cities and towns. A large number of buildings, including houses, roads and bridges (Satellite images in Figures 1(d) and (e)), were destroyed or collapsed, causing nearly 90000 dead and missing.
The moment tensor solution, source time function and spatial-temporal rupture process of the M S 6.4 earthquake, which occurred in Ning'er, Yunnan Province, are obtained by inverting the broadband waveform data of 20 global stations. The inverted result shows that the scalar seismic moment is 5.51×10 18 Nm, which corresponds to a moment magnitude of M W 6.4. The correspondent best double couple solution results in two nodal planes of strike 152°/dip 54°/rake 166°, and strike 250°/dip 79°/ rake 37°, respectively. Considering the isoseismals and geological structures in the meizoseismal region, the first nodal plane (strike 152°/ dip 54°/ rake 166°) is preferred to be the seismogenic fault. Thus, the M S 6.4 earthquake occurred mainly along a right-lateral fault striking 152°. The source time function shows that the duration time of the earthquake is about 14 s. The most of the energy releases within the first 11 s and in 11-14 s the rupture is weak. The snapshots of the slip-rate indicate that the rupture process has 3 more detailed stages. In the first stage of the first 4 s after rupture initiation, the rupture propagates simultaneously toward both strike and dip directions; in the second stage of the following 3 s, the rupture extends to down-dip direction; and in the third stage, the rupture looks to be scattering on the fault. In general, this earthquake is of bilateral rupture, and the rupture mainly takes place in strike-dip direction. The major ruptured area is in the shape of a diamond with a dimension of 19 km. On the whole fault plane, the maximum slip is about 1.2 m, the average slip is about 0.1 m, the maximum slip-rate is 0.4 m/s and the average slip-rate is 0.1 m/s. The features of the co-seismic theoretical displacement field of the Ning'er earthquake fault, calculated based on the inverted fault parameters, are consistent with those of the observed isoseismals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.