Spermatogonial stem cells (SSCs) maintain spermatogenesis throughout adulthood through balanced self-renewal and differentiation, yet the regulatory logic of these fate decisions is poorly understood. The transcription factors Sal-like 4 (SALL4) and promyelocytic leukemia zinc finger (PLZF; also known as ZBTB16) are known to be required for normal SSC function, but their targets are largely unknown. ChIP-seq in mouse THY1+ spermatogonia identified 4176 PLZF-bound and 2696 SALL4-bound genes, including 1149 and 515 that were unique to each factor, respectively, and 1295 that were bound by both factors. PLZF and SALL4 preferentially bound gene promoters and introns, respectively. Motif analyses identified putative PLZF and SALL4 binding sequences, but rarely both at shared sites, indicating significant non-autonomous binding in any given cell. Indeed, the majority of PLZF/SALL4 shared sites contained only PLZF motifs. SALL4 also bound gene introns at sites containing motifs for the differentiation factor DMRT1. Moreover, mRNA levels for both unique and shared target genes involved in both SSC self-renewal and differentiation were suppressed following SALL4 or PLZF knockdown. Together, these data reveal the full profile of PLZF and SALL4 regulatory targets in undifferentiated spermatogonia, including SSCs, which will help elucidate mechanisms controlling the earliest cell fate decisions in spermatogenesis.
Determination of appropriate chamber size is critical for normal vertebrate heart development. Although Nr2f transcription factors promote atrial maintenance and differentiation, how they determine atrial size remains unclear. Here, we demonstrate that zebrafish Nr2f1a is expressed in differentiating atrial cardiomyocytes. Zebrafish nr2f1a mutants have smaller atria due to a specific reduction in atrial cardiomyocyte (AC) number, suggesting it has similar requirements to Nr2f2 in mammals. Furthermore, the smaller atria in nr2f1a mutants are derived from distinct mechanisms that perturb AC differentiation at the chamber poles. At the venous pole, Nr2f1a enhances the rate of AC differentiation. Nr2f1a also establishes the atrial-atrioventricular canal (AVC) border through promoting the differentiation of mature ACs. Without Nr2f1a, AVC markers are expanded into the atrium, resulting in enlarged endocardial cushions (ECs). Inhibition of Bmp signaling can restore EC development, but not AC number, suggesting that Nr2f1a concomitantly coordinates atrial and AVC size through both Bmp-dependent and independent mechanisms. These findings provide insight into conserved functions of Nr2f proteins and the etiology of atrioventricular septal defects (AVSDs) associated with NR2F2 mutations in humans.
Coordinated transcriptional and epigenetic mechanisms that direct development of the later differentiating second heart field (SHF) progenitors remain largely unknown. Here, we show that a novel zebrafish histone deacetylase 1 ( hdac1) mutant allele cardiac really gone ( crg ) has a deficit of ventricular cardiomyocytes (VCs) and smooth muscle within the outflow tract (OFT) due to both cell and non-cell autonomous loss in SHF progenitor proliferation. Cyp26-deficient embryos, which have increased retinoic acid (RA) levels, have similar defects in SHF-derived OFT development. We found that nkx2 . 5 + progenitors from Hdac1 and Cyp26-deficient embryos have ectopic expression of ripply3 , a transcriptional co-repressor of T-box transcription factors that is normally restricted to the posterior pharyngeal endoderm. Furthermore, the ripply3 expression domain is expanded anteriorly into the posterior nkx2 . 5 + progenitor domain in crg mutants. Importantly, excess ripply3 is sufficient to repress VC development, while genetic depletion of Ripply3 and Tbx1 in crg mutants can partially restore VC number. We find that the epigenetic signature at RA response elements (RAREs) that can associate with Hdac1 and RA receptors (RARs) becomes indicative of transcriptional activation in crg mutants. Our study highlights that transcriptional repression via the epigenetic regulator Hdac1 facilitates OFT development through directly preventing expression of the RA-responsive gene ripply3 within SHF progenitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.