Environment-related parameters, including viscosity, polarity, temperature, hypoxia, and pH, play pivotal roles in controlling the physical or chemical behaviors of local molecules. In particular, in a biological environment, such factors predominantly determine the biological properties of the local environment or reflect corresponding status alterations. Abnormal changes in these factors would cause cellular malfunction or become a hallmark of the occurrence of severe diseases. Therefore, in recent years, they have increasingly attracted research interest from the fields of chemistry and biological chemistry. With the emergence of fluorescence sensing and imaging technology, several fluorescent chemosensors have been designed to respond to such parameters and to further map their distributions and variations in vitro/in vivo. In this work, we have reviewed a number of various environment-responsive chemosensors related to fluorescent recognition of viscosity, polarity, temperature, hypoxia, and pH that have been reported thus far.
A self-calibrating bipartite viscosity sensor 1 for cellular mitochondria, composed of coumarin and boron-dipyrromethene (BODIPY) with a rigid phenyl spacer and a mitochondria-targeting unit, was synthesized. The sensor showed a direct linear relationship between the fluorescence intensity ratio of BODIPY to coumarin or the fluorescence lifetime ratio and the media viscosity, which allowed us to determine the average mitochondrial viscosity in living HeLa cells as ca. 62 cP (cp). Upon treatment with an ionophore, monensin, or nystatin, the mitochondrial viscosity was observed to increase to ca. 110 cP.
Intracellular viscosity strongly influences transportation of mass and signal, interactions between the biomacromolecules, and diffusion of reactive metabolites in live cells. Fluorescent molecular rotors are recently developed reagents used to determine the viscosity in solutions or biological fluid. Due to the complexity of live cells, it is important to carry out the viscosity determinations in multimode for high reliability and accuracy. The first molecular rotor (RY3) capable of dual mode fluorescence imaging (ratiometry imaging and fluorescence lifetime imaging) of intracellular viscosity is reported. RY3 is a pentamethine cyanine dye substituted at the central (meso-) position with an aldehyde group (CHO). In nonviscous media, rotation of the CHO group gives rise to internal conversion by a nonradiative process. The restraining of rotation in viscous or low-temperature media results in strong fluorescence (6-fold increase) and lengthens the fluorescence lifetime (from 200 to 1450 ps). The specially designed molecular sensor has two absorption maxima (λ(abs) 400 and 613 nm in ethanol) and two emission maxima (in blue, λ(em) 456 nm and red, 650 nm in ethanol). However it is only the red emission which is markedly sensitive to viscosity or temperature changes, providing a ratiometric response (12-fold) as well as a large pseudo-Stokes shift (250 nm). A mechanism is proposed, based on quantum chemical calculations and (1)H NMR spectra at low-temperature. Inside cells the viscosity changes, showing some regional differences, can be clearly observed by both ratiometry imaging and fluorescence lifetime imaging (FLIM). Although living cells are complex the correlation observed between the two imaging procedures offers the possibility of previously unavailable reliability and accuracy when determining intracellular viscosity.
A series of heptamethine cyanine (1-3) derivatives bearing a carbamate ethyl disulfide group and gemcitabine, an anticancer drug, have been newly synthesized. Their disulfide bonds are readily cleaved by various thiols including glutathione, to result in a subsequent decomposition of the carbamate into amine followed by release of the active gemcitabine, which can be monitored by the fluorescence changes. In the biological experiment, prodrug 1 is preferentially up-taken by folate-positive KB cells over folate-negative A549 cells via receptor-mediated endocytosis to release gemcitabine causing cell death and to emit fluorescence in endoplasmic reticulum. Moreover, it is selectively accumulated in the KB cells which were treated to mice by dorsal subcutaneous injection. This drug delivery system is a new theranostic agent, wherein both therapeutic effect and drug uptake can be easily monitored at the subcellular level, by in vivo and in vitro fluorescence imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.