While neural networks demonstrate stronger capabilities in pattern recognition nowadays, they are also becoming larger and deeper. As a result, the effort needed to train a network also increases dramatically. In many cases, it is more practical to use a neural network intellectual property (IP) that an IP vendor has already trained. As we do not know about the training process, there can be security threats in the neural IP: the IP vendor (attacker) may embed hidden malicious functionality, i.e. neural Trojans, into the neural IP. We show that this is an effective attack and provide three mitigation techniques: input anomaly detection, re-training, and input preprocessing. All the techniques are proven effective. The input anomaly detection approach is able to detect 99.8% of Trojan triggers although with 12.2% false positive. The re-training approach is able to prevent 94.1% of Trojan triggers from triggering the Trojan although it requires that the neural IP be reconfigurable. In the input preprocessing approach, 90.2% of Trojan triggers are rendered ineffective and no assumption about the neural IP is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.