Abstract. Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal "winding" surface.We'll investigate if the existence of winding surface unnecessarily constrains the optimization, and a new method to design coils for stellarators is presented. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that covers both physical requirements and engineering constraints is constructed. The derivatives of the target function are calculated analytically. A numerical code, named FOCUS, has been developed. Applications to a simple configuration, the W7-X, and LHD plasmas are presented.
Objective: FNA is a simple, safe, cost-effective and accurate diagnostic tool for the initial screening of patients with thyroid nodules. The aims of this study were to determine the diagnostic utility of FNAC performed in our institution, assess the cytomorphologic features that contribute to diagnostic errors and propose improvement measures.Methods: A total of 2781 FNACs were included in the study, and 1122 cases were compared with their histological diagnoses. We retrospectively reexamined our discordant (both false-negative and false-positive) cases and performed a systematic review of previous studies on causes of misdiagnoses.Results: When DC V and DC VI were both considered cytologic-positive, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and diagnostic accuracy were 98.3, 30.9, 94.9, 58.3 and 93.5%, respectively. If DC VI was considered cytologic-positive, the sensitivity, specificity, PPV, NPV and diagnostic accuracy of FNAC were 98.0, 84.0, 99.4, 58.3, and 97.5% respectively. The main cause of false-negative diagnoses was sampling error (13/15, 86.7%), while interpretation error led to the majority of the false-positive diagnoses (38/47, 80.9%). Overlapping cytological features in adenomatous hyperplasia, thyroiditis and cystic lesions were the major factors contributing to interpretation errors, while the size and number of nodules may have led to false-negative diagnoses because of heterogeneity and unsampled areas. Conclusions:The sensitivity and PPV of thyroid FNAC in our institution were higher than those in the published data, while the specificity and NPV were lower. Regarding the FNA category DC V, a frozen section analysis during diagnostic lobectomy is necessary. Multiple passes should be performed in various parts of a large nodule or from different nodules to reduce the risk of false-negative findings. Cytopathologists should strengthen their criteria for the identification of adenomatous hyperplasia, thyroiditis and cystic lesions to avoid false-positive diagnoses. NIFTP has little effect on diagnostic accuracy and the distribution of diagnostic errors.
The Keda Torus eXperiment (KTX) is a medium-sized reversed field pinch (RFP) device under construction at the University of Science and Technology of China. The KTX has a major radius of 1.4 m and a minor radius of 0.4 m with an Ohmic discharge current up to 1 MA. The expected electron density and temperature are, respectively, 2 × 10 19 m −3 and 800 eV. A combination of a stainless steel vacuum chamber and a thin copper shell (with a penetration time of 20 ms) surrounding the plasma provides an opportunity for studying resistive wall mode instabilities. The unique double-C design of the KTX vacuum vessel allows access to the interior of the KTX for easy first-wall modifications and investigations of power and particle handling, a largely unexplored territory in RFP research leading to demonstration of the fusion potential of the RFP concept. An active feedback mode control system is designed and will be implemented in the second phase of the KTX program. The recent progress of this program will be presented, including the design of the vacuum vessel, magnet systems and power supplies.
To find the optimal coils for stellarators, nonlinear optimization algorithms are applied in existing coil design codes. However, none of these codes have used the information from the second-order derivatives. In this paper, we present a modified Newton method in the recently developed code FOCUS. The Hessian matrix is calculated with analytically derived equations. Its inverse is approximated by a modified Cholesky factorization and applied in the iterative scheme of a classical Newton method. Using this method, FOCUS is able to recover the W7-X modular coils starting from a simple initial guess. Results demonstrate significant advantages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.