Soil microbial carbon use efficiency (CUE) is a crucial parameter that can be used to evaluate the partitioning of soil carbon (C) between microbial growth and respiration.However, general patterns of microbial CUE among terrestrial ecosystems (e.g., farmland, grassland, and forest) remain controversial. To address this knowledge gap, data from 41 study sites (n = 197 soil samples) including 58 farmlands, 95 forests, and 44 grasslands were collected and analyzed to estimate microbial CUEs using a biogeochemical equilibrium model. We also evaluated the metabolic limitations of microbial growth using an enzyme vector model and the drivers of CUE across different ecosystems. The CUEs obtained from soils of farmland, forest, and grassland ecosystems were significantly different with means of 0.39, 0.33, and 0.42, respectively, illustrating that grassland soils exhibited higher microbial C sequestration potentials (p < .05).Microbial metabolic limitations were also distinct in these ecosystems, and carbon limitation was dominant exhibiting strong negative effects on CUE. Exoenzyme stoichiometry played a greater role in impacting CUE values than soil elemental stoichiometry within each ecosystem. Specifically, soil exoenzymatic ratios of C:phosphorus (P) acquisition activities (EEA C:P ) and the exoenzymatic ratio of C:nitrogen (N) acquisition activities (EEA C:N ) imparted strong negative effects on soil microbial CUE in grassland and forest ecosystems, respectively. But in farmland soils, EEA C:P exhibited greater positive effects, showing that resource constraints could regulate microbial resource allocation with discriminating patterns across terrestrial ecosystems. Furthermore, mean annual temperature (MAT) rather than mean annual precipitation (MAP) was a critical climate factor affecting CUE, and soil pH as a major factor remained positive to drive the changes in microbial CUE within ecosystems. This research illustrates a conceptual framework of microbial CUEs in terrestrial ecosystems and provides the theoretical evidence to improve soil microbial C sequestration capacity in response to global change.
The construction of direct Z-scheme heterojunctions with high photocatalytic degradation ability is important for wastewater treatment, but there are still many unsolved challenges.
Wanfeng Lake, a highland lake in the upper part of the Pearl River Basin, has long been disturbed by aquaculture and human activities, resulting in the accumulation of antibiotics and antibiotic resistance genes (ARGs), which pose a major threat to humans and animals. In this study, 20 antibiotics, 9 ARGs, 2 mobile genetic elements (intl1 and intl2) and microbial community structure were investigated in Wanfeng Lake. The results of the study showed that the total concentration of antibiotics in surface water was 372.72 ng/L, with ofloxacin (OFX) having the highest concentration (169.48 ng/L), posing a high ecological risk to aquatic organisms. The total concentration of antibiotics in sediments was235.86 ng/g, with flumequine (FLU) having the highest concentration (122.54 ng/g). Thisindicates that the main type of antibiotics in Wanfeng Lake are quinolones. Real-time fluorescence quantitative PCR analysis results of the relative abundance of ARGs in both surface water and sediments showed that sulfonamide resistance genes > macrolide resistance genes > tetracycline resistance genes > quinolone resistance genes, indicating that sulfonamide resistance genes were the dominant type. The metagenomic results showed that the predominant microorganisms in the sediment under the phylum level were Planctomycetes, Proteobacteria, Euryarchaeota and Chloroflexi. Pearson’s correlation analysis showed a significantly positive correlation between antibiotics and environmental factors with ARGs in Wanfeng Lake and a significant positive correlation between antibiotics and ARGs with microorganisms in sediments. This suggests that there is a potential pressure of antibiotics on ARGs, while microorganisms provide the driving force for the evolution and spread of ARGs. This study provides a basis for further research on the occurrence and spread of antibiotics and ARGs in Wanfeng Lake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.