Understanding the effect of metal particle size on the reactions during hydrodeoxygenation of phenolics is of great importance for rational design of a catalyst for selective control of a desirable reaction. To this end, vapor phase hydrodeoxygenation of m-cresol was studied over 5% Ni/SiO 2 catalysts with varying Ni particle sizes (2−22 nm) at 300 °C and 1 atm H 2 . The Ni particle sizes were confirmed by several characterization techniques, and the varying surface concentration of terrace, step, and corner sites with Ni particle sizes was verified by H 2 temperature-programmed desorption. Decreasing the Ni particle size from 22 to 2 nm improves the intrinsic reaction rate by 24 times and the turnover frequency (TOF) by 3 times. The TOFs for toluene and methylcyclohexanone/methylcyclohexanol formation increase by 6 and 4 times, respectively, while the TOF for CH 4 formation decreases by 3/4, indicating that smaller particles with more defect sites (step and corner) favor deoxygenation and hydrogenation while larger particles with more terrace sites favor C−C hydrogenolysis. Density functional theory study shows that the barrier for direct dehydroxylation of phenol on Ni(111), Ni(211), and defected Ni(211) decreases from 175.6 to 145.6 and then to 120.5 kJ/mol. The results indicate that a highly coordinatively unsaturated surface Ni site is responsible for C−O cleavage through facile adsorption and stabilization of −OH in the transition state, thus facilitating deoxygenation toward toluene. Our results indicate that tuning the metal particle size is an effective approach to control reactions during hydrodeoxygenation.
Conversion of CO2 and CH4 to value-added products will contribute to alleviating the green-house gas effect but is a challenge both scientifically and practically. Stabilization of the methyl group through CH4 activation and facile CO2 insertion ensure the realization of C-C coupling. In the present study, we demonstrate the ready C-C coupling reaction on a Zn-doped ceria catalyst. The detailed mechanism of this direct C-C coupling reaction was examined based on the results from density functional theory calculations. The results show that the Zn dopant stabilizes the methyl group by forming a Zn-C bond, thus hindering subsequent dehydrogenation of CH4. CO2 can be inserted into the Zn-C bond in an activated bent configuration, with the transition state in the form of a three-centered Zn-C-C moiety and an activation barrier of 0.51 eV. The C-C coupling reaction resulted in the acetate species, which could desorb as acetic acid by combining with a surface proton. The formation of acetic acid from CO2 and CH4 is a reaction with 100% atom economy, and the implementation of the reaction on a heterogeneous catalyst is of great importance to the utilization of the greenhouse gases. We tested other possible dopants including Al, Ga, Cd, In, and Ni and found a positive correlation between the activation barrier of C-C coupling and the electronegativity of the dopant, although C-H bond activation is likely the dominant reaction on the Ni-doped ceria catalyst.
Aldol condensations of carbonyl compounds for C–C bond formation are a very important class of reactions in organic synthesis and upgrading of biomass-derived feedstocks. However, the atomic level understanding of reaction mechanisms and structure–activity correlation on widely used transition metal oxide catalysts are limited due to the high degree of structural heterogeneity of catalysts such as commercial TiO 2 powders. Here, we provide a deep understanding of the reaction mechanisms, kinetics, and structure–function relationships for vapor phase acetone aldol condensation through the controlled synthesis of two catalysts with high surface areas and clean, dominant facets, coupled with detailed characterization and kinetic studies that are further assisted by density functional theory (DFT) calculations. Temperature-dependent diffuse reflectance infrared Fourier transform spectroscopy showed the existence of abundant acetone bonded to surface hydroxyl groups (acetone-O s H) and acetone bonded to Lewis acid sites (acetone-Ti 5c ) on the surface of both {101} and {001} facet dominant TiO 2 . Intermolecular C–C coupling of theenolate intermediate from acetone-Ti 5c and a vicinal acetone-O s H is a kinetically relevant step, which is consistent with kinetic and isotopic studies as well as DFT calculations. The {001} facet showed a lower apparent activation energy (or higher activity) than the {101} facet. This is likely caused by the weaker Lewis acid and Brønsted base strengths of the {001} facet which favors the reprotonation–desorption of the coupled intermediate, making the C–C coupling step more exothermic on the {001} facet and resulting in an earlier transition state with a lower activation barrier. It is also possible that the {001} facet has a smoother surface configuration and less steric hindrance during intermolecular C–C bond formation than the {101} facet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.