Light conditions can cause quantitative and qualitative changes in anthocyanin. However, little is known about the underlying mechanism of light quality-regulated anthocyanin accumulation in fruits. In this study, light-emitting diodes (LEDs) were applied to explore the effect of red and blue light on strawberry coloration. The results showed contents of total anthocyanins (TA), pelargonidin 3-glucoside (Pg3G) and pelargonidin 3-malonylglucoside (Pg3MG) significantly increased after blue and red light treatment. Pg3G was the major anthocyanin component in strawberry fruits, accounting for more than 80% of TA, whereas Pg3MG accounted for a smaller proportion. Comparative transcriptome analysis was conducted using libraries from the treated strawberries. A total of 1402, 5034, and 3764 differentially-expressed genes (DEGs) were identified in three pairwise comparisons (red light versus white light, RL-VS-WL; blue light versus white light, BL-VS-WL; blue light versus red light, BL-VS-RL), respectively. Photoreceptors and light transduction components remained dynamic to up-regulate the expression of regulatory factors and structural genes related to anthocyanin biosynthesis under red and white light, whereas most genes had low expression levels that were not consistent with the highest total anthocyanin content under blue light. Therefore, the results indicated that light was an essential environmental factor for anthocyanin biosynthesis before the anthocyanin concentration reached saturation in strawberry fruits, and blue light could quickly stimulate the accumulation of anthocyanin in the fruit. In addition, red light might contribute to the synthesis of proanthocyanidins by inducing LAR and ANR.
To investigate the molecular mechanism underlying fruit development and color change, comparative transcriptome analysis was employed to generate transcriptome profiles of two typical wild varieties of Fragaria pentaphylla at three fruit developmental stages (green fruit stage, turning stage, and ripe fruit stage). We identified 25,699 long noncoding RNAs (lncRNAs) derived from 25,107 loci in the F. pentaphylla fruit transcriptome, which showed distinct stage- and genotype-specific expression patterns. Time course analysis detected a large number of differentially expressed protein-coding genes and lncRNAs associated with fruit development and ripening in both of the F. pentaphylla varieties. The target genes downregulated in the late stages were enriched in terms of photosynthesis and cell wall organization or biogenesis, suggesting that lncRNAs may act as negative regulators to suppress photosynthesis and cell wall organization or biogenesis during fruit development and ripening of F. pentaphylla . Pairwise comparisons of two varieties at three developmental stages identified 365 differentially expressed lncRNAs in total. Functional annotation of target genes suggested that lncRNAs in F. pentaphylla may play roles in fruit color formation by regulating the expression of structural genes or regulatory factors. Construction of the regulatory network further revealed that the low expression of Fra a and CHS may be the main cause of colorless fruit in F. pentaphylla .
NAC proteins comprise of a plant-specific transcription factor (TF) family and play important roles in plant development and stress responses. Switchgrass (Panicum virgatum) is the prime candidate and model bioenergy grass across the world. Excavating agronomically valuable genes is important for switchgrass molecular breeding. In this study, a total of 251 switchgrass NAC (PvNACs) family genes clustered into 19 subgroups were analyzed, and those potentially involved in stress response or tissue-specific expression patterns were pinpointed. Specifically, 27 PvNACs were considered as abiotic stress-related including four membrane-associated ones. Among 40 tissue-specific PvNACs expression patterns eight factors were identified that might be relevant for lignin biosynthesis and/or secondary cell wall formation. Conserved functional domains and motifs were also identified among the PvNACs and potential association between these motifs and their predicted functions were proposed, that might encourage experimental studies to use PvNACs as possible targets to improve biomass production and abiotic stress tolerance.
Blue light is an important signal that regulates the flowering of strawberry plants. To reveal the mechanism of early flowering under blue light treatment at the transcriptional regulation level, seedlings of cultivated strawberry (Fragaria × ananassa Duch.) “Benihoppe” were subjected to a white light treatment (WL) and blue light treatment (BL) until their flowering. To detect the expression patterns of genes in response to BL, a transcriptome analysis was performed based on RNA-Seq. The results identified a total of 6875 differentially expressed genes (DEGs) that responded to BL, consisting of 3138 (45.64%) downregulated ones and 3737 (54.36%) upregulated ones. These DEGs were significantly enriched into 98 GO terms and 71 KEGG pathways based on gene function annotation. Among the DEGs, the expression levels of genes that might participate in light signaling (PhyB, PIFs, and HY5) and circadian rhythm (FKF1, CCA1, LHY, and CO) in plants were altered under BL. The BBX transcription factors which responded to BL were also identified. The result showed that the FaBBX29, one of strawberry’s BBX family genes, may play an important role in flowering regulation. Our results provide a timely, comprehensive view and a reliable reference data resource for further study of flowering regulation under different light qualities.
B-box transcription factors (TFs) play a vital role in light-induced anthocyanin accumulation. Here, the FaBBX22 gene encoding 287 amino acids B-box TF was isolated from the cultivated strawberry variety ‘Benihoppe’ and characterized functionally. The expression analysis showed that FaBBX22 was expressed in the roots, stems, leaves, flowers and fruits, and its transcription level was upregulated under the red- or blue-light irradiation. FaBBX22 was localized in the nucleus and showed trans-acting activity in yeast cells. Ectopic overexpression of FaBBX22 in Arabidopsis enhanced the accumulation of anthocyanin. Additionally, we obtained transgenic strawberry calli that overexpressed the FaBBX22 gene, and strawberry calli coloration assays showed that FaBBX22 increased anthocyanin accumulation by upregulating the expression of anthocyanin biosynthetic genes (FaPAL, FaANS, FaF3′H, FaUFGT1) and transport gene FaRAP in a light-dependent manner. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation assays indicated that FaBBX22 interacted with FaHY5. Furthermore, mutation of the 70th Asp residue in FaBBX22 protein to an Ala residue disrupted the interaction between FaBBX22 and FaHY5. Further, a transient expression assay demonstrated that the co-expression of FaBBX22 and FaHY5 could strongly promote anthocyanin accumulation in strawberry fruits. Collectively, these results revealed the positive regulatory role of FaBBX22 in light-induced anthocyanin accumulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.