Abstract:The large capacity transmission of power over long distance and the rapid development of renewable energy increase the probability of unexpected emergencies such as overload and under-voltage. To tackle these emergencies and defend future disturbances, the corrective switching is implemented as an online control and a multi-objective scheme-making approach is proposed. A multi-objective 0-1 integer optimization model is established to cover a set of contradictory objectives from the aspects of economics, security and reliability. A two-phase optimization approach is proposed to ensure computation efficiency and coordinate the trade-off between these objectives: in the first phase, a feasible set silting method is utilized to quickly search for a set of candidate corrective switching schemes; in the second phase, the technique for order preference by similarity to an ideal solution (TOPSIS) method is applied to the candidate set to coordinate the contradictory objectives and determine the ultimate engineering scheme. Two case studies are conducted to verify the proposed approach in overload and under-voltage scenarios. The results are discussed to show the strengths when the performance indices of economics, security and reliability are considered.
IntroductionThe widespread use of smartphones has triggered concern over problematic smartphone use (PSPU), as well as the need to elucidate its underlying mechanisms. However, the correlation between cortical activation and deficient inhibitory control in PSPU remains unclear.MethodsThis study examined inhibitory control using the color–word matching Stroop task and its cortical-activation responses using functional near-infrared spectroscopy (fNIRS) in college students with PSPU (n = 56) compared with a control group (n = 54).ResultsAt the behavioral level, Stroop interference, coupled with reaction time, was significantly greater in the PSPU group than in the control group. Changes in oxygenated hemoglobin (Oxy-Hb) signals associated with Stroop interference were significantly increased in the left ventrolateral prefrontal cortex, left frontopolar area, and bilateral dorsolateral prefrontal cortex (DLPFC). Moreover, the PSPU group had lower Oxy-Hb signal changes associated with Stroop interference in the left-DLPFC, relative to controls.DiscussionThese results provide first behavioral and neuroscientific evidence using event-related fNIRS method, to our knowledge, that college students with PSPU may have a deficit in inhibitory control associated with lower cortical activation in the left-DLPFC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.