In edge computing-enhanced wireless sensor networks (WSNs), multidimensional data aggregation can optimize the utilization of computation resources for data collection. How to improve the efficiency of data aggregation has gained considerable attention in both academic and industrial fields. This article proposes a new efficient privacy-preserving statistical aggregation scheme (EPPSA) for WSNs, in which statistical data can be calculated without exposing the total number of sensor devices to control center. The EPPSA scheme supports multiple statistical aggregation functions, including arithmetic mean, quadratic mean, weighted mean, and variance. Furthermore, the EPPSA scheme adopts the modified Montgomery exponentiation algorithms to improve the aggregation efficiency in the edge aggregator. The performance evaluation shows that the EPPSA scheme gets higher aggregation efficiency and lower communication load than the existing statistical aggregation schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.