Bioinspired and biohybrid micromotors represent a revolution in microrobotic research and are playing an increasingly important role in biomedical applications. In particular, biological micromotors that are multifunctional and can perform complex tasks are in great demand. Here, we report living and multifunctional micromotors based on single cells (green microalgae: Chlamydomonas reinhardtii) that are controlled by optical force. The micromotor's locomotion can be carefully controlled in a variety of biological media including cell culture medium, saliva, human serum, plasma, blood, and bone marrow fluid. It exhibits the capabilities to perform multiple tasks, in particular, indirect manipulation of biological targets and disruption of biological aggregates including in vitro blood clots. These micromotors can also act as elements in reconfigurable motor arrays where they efficiently work collaboratively and synchronously. This work provides new possibilities for many in vitro biomedical applications including target manipulation, cargo delivery and release, and biological aggregate removal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.