Background: Tissue factor (TF) is the primary initiator of blood coagulation. In response to tumor necrosis factor (TNF)-α human umbilical vein endothelial cells (HUVECs) express 2 TF isoforms: a soluble alternatively spliced isoform (asHTF) and membrane-bound "full length" (fl)TF. How the differential TF isoform expression is regulated is still unknown. This study compared the impact of PI3K/Akt pathway inhibition on alternative splicing of TF in HUVECs, to the influence of transcriptional regulation by inhibiting nuclear factor κ B (NFκB).
Methods and Results:The mRNA expression of TF isoforms was assessed by real-time PCR, the thrombogenic activity was measured by a chromogenic TF activity assay and the phosphorylation state of serine/arginine-rich (SR) proteins was analyzed by western blotting. Transfection of HUVECs was done 72 h before the inhibition experiments were performed. PI3K/Akt pathway inhibition reduced the mRNA expression of asHTF but not flTF. Inhibition of NFκB reduced the expression of both isoforms. Moreover, the PI3K/Akt pathway inhibition, but not that of NFκB, modified the phosphorylation of the SR proteins SRp75, SRp55 and SF2/ASF. Additionally, overexpression of SF2/ASF and SRp75 influenced the differential TF-isoform expression in HUVECs. Conclusions: The PI3K/Akt pathway modulates alternative splicing of TF in HUVECs, distinct from transcriptional regulation. (Circ J 2009; 73: 1746 -1752
SUMMARYAim: A major concern of stent implantation after percutaneous coronary intervention (PCI) is acute stent thrombosis. Effective inhibition of periprocedural platelet function in patients with coronary artery disease (CAD) leads to an improved outcome. In this study, we examined the periprocedural platelet reactivity after administrating bivalirudin during PCI compared to unfractionated heparin (UFH) administration. Further, the effect of bivalirudin on induced tissue factor (TF) expression in smooth muscle cells (SMC) was determined. Methods: Patients with CAD (n = 58) and double antithrombotic medication were treated intraprocedural with UFH (n = 30) or bivalirudin (n = 28). Platelet activation markers were flow cytometrically measured before and after stenting. The expression of TF in SMC was determined by real-time PCR and Western blotting. The thrombogenicity of platelet-derived microparticles and SMC was assessed via a TF activity assay. Results: Bivalirudin significantly diminished the agonist-induced platelet reactivity post-PCI. Compared to UFH treatment, the adenosine diphosphate (ADP) and thrombin receptor-activating peptide (TRAP)-induced thrombospondin expression post-PCI was reduced when bivalirudin was administrated during intervention. In contrast to UFH, bivalirudin reduced the P-selectin expression of unstimulated and ADP-induced platelets post-PCI. Moreover, bivalirudin inhibited the thrombin-, but not FVIIa-or FVIIa/FX-induced TF expression and pro-coagulant TF activity of SMC. Moreover, bivalirudin reduced the TF activity of platelet-derived microparticles postinduction with TRAP or ADP. Conclusions: Bivalirudin is better than UFH in reducing periprocedural platelet activation. Moreover, thrombin-induced TF expression is inhibited by bivalirudin. Thus, bivalirudin seems to be a better anticoagulant during PCI than UFH.
Clopidogrel leads to a reduction of not only sCD40L but also TF in stable CAD. The reduction of TF may lead to a reduced thrombogenicity, contributing to the benefits of clopidogrel therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.