<p>Buildings that have existed for centuries undergo structural changes over time due to variations in use. In addition, many structures are severely damaged for example by moisture intrusion. To determine the distribution of moisture in the structure, they are often examined pointwise by core sampling. In addition to invasive methods, non-destructive methods may be applied to obtain three-dimensional hints on the moisture distribution with structures of interest. &#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160; <br />The purpose of this paper is to show that non-destructive determination of moisture distribution is possible by using and combining geophysical measurement methods such as infrared thermography (IR), ultrasound (US) and ground penetrating radar (GPR). There are examples for the combination of these methods for non-destructive examination, but it is not yet commonly applied in the field of restoration and conservation of historic buildings.&#160; &#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160; <br />We present results of geophysical investigations of medieval wall paintings in the cloister of the cathedral in Schleswig (Federal State Schleswig-Holstein, Northern Germany) in the framework of a project funded by the German Federal Foundation for the Environment (Deutsche Bundesstiftung Umwelt - DBU). In the cloister, large-scale alterations of the medieval red-line paintings occurred due to gypsum deposits and a shellac coating. In order to quantify the material properties of a vault section (yoke) in the cloister during the restoration ultrasound surface wave measurements, passive and active thermography and ground penetrating radar measurements were carried out. <br />Repeating measurements at intervals of several months made it possible to evaluate the effectiveness of the test treatments by different solvents to remove the shellac as well as the gypsum deposits. In addition, our results from the passive thermography measurements show that in one section a defect in the horizontal barrier could be responsible for moisture ingress and associated damage. The radargrams recorded in this area confirm that a significant change in reflection amplitudes is present in the areas of increased moisture.</p>
Non-destructive geophysical methods were applied to detect moisture at the St. Petri Cathedral in Schleswig. One of them is thermography, which allows to distinguish between intact and defective medieval plaster. Additionally, thesuccess of a restoration can be determined by ultrasonic surface measurements.
<p>The preservation of culturally significant buildings is challenging due to the variety of historical building materials, the often complex building history and damage patterns. It is usually associated with high financial costs. Non-destructive testing may help to plan, optimize, and monitor conservation measures. Here, we report on non-destructive testing of moisture distribution at the Cathedral St. Petri in Schleswig (Germany) using thermography and georadar measurements.&#160; These methods are standard methods in engineering geology and construction. In the field of heritage conservation, however, the application and especially the combination of several of these methods is not yet established.</p><p>The walls of the &#8216;Schwahl&#8217; (a three-sided cloister) show medieval paintings from the 14th century. In the Schwahl, large-scale alterations occur due to gypsum deposits and a shellac coating. &#160; Active thermography measurements were taken before and after test treatments to evaluate the effectiveness of the use of different solvents to remove the shellac and the gypsum deposits. Passive thermography and georadar measurements indicate increased moisture content in the area of the gypsum deposits likely caused by a permeable horizontal sealing barrier below the paintings. Examples of the measurements are shown and the processing of the thermography and georadar measurements including the attenuation analysis are discussed.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.