We study the asymptotic learning rates under linear and log-linear combination rules of belief vectors in a distributed hypothesis testing problem. We show that under both combination strategies, agents are able to learn the truth exponentially fast, with a faster rate under log-linear fusion. We examine the gap between the rates in terms of network connectivity and information diversity. We also provide closed-form expressions for special cases involving federated architectures and exchangeable networks.
We study a discrete-time model where each packet has a cost of not being sent -this cost might depend on the packet content.We study the tradeoff between the age and the cost where the sender is confined to packet-based strategies. The optimal tradeoff is found by an appropriate formulation of the problem as a Markov Decision Process (MDP). We show that the optimal tradeoff can be attained with finite-memory policies and we devise an efficient policy iteration algorithm to find these optimal policies. We further study a related problem where the transmitted packets are subject to erasures. We show that the optimal policies for our problem are also optimal for this new setup. Allowing coding across packets significantly extends the packet-based strategies.We show that when the packet payloads are small, the performance can be improved by coding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.