This paper presents an atmospheric propagation model, based on ray acoustics, that accounts for realistic weather conditions in the evaluation of the noise footprint of an aircraft. Noise sources, obtained using the Ffowcs Williams and Hawkings acoustic analogy applied to scale-resolved flow simulation data, are stored on a hemisphere surrounding the vehicle. These noise sources are propagated using a propagation model that takes into account the vertical variability of air temperature and wind velocity. The electric vertical takeoff and landing aircraft, presented by Casalino, van der Velden, and Romani [(2019). in Proceedings of the AIAA Scitech 2019 Forum, January 7-11, San Diego, CA, pp. 1834-1851], is used as a case study; noise footprints, obtained considering various vertically varying temperature and wind velocity distributions, are compared. It is shown that weather conditions in the acoustic wave propagation can contribute to mismatch up to 4 dBA in the illuminated zone and a significant drop in the refractive shadow zone caused by the vertical air temperature and wind velocity gradients. This work constitutes the first accomplishment in including realistic atmospheric effects in aircraft community noise prediction based on scaleresolved flow simulations. V
This work presents a novel noise propagation approach based on the Gaussian Beam Tracing (GBT) method that accounts for complex source directivity, weather conditions, and irregular ground topology for the evaluation of the noise footprint. The approach takes a precomputed noise sphere as input and propagates the acoustic pressure fluctuations through a moving inhomogeneous atmosphere over realistic three-dimensional (3D) terrain. Noise footprints, obtained with di erent source noise spheres and wind flow conditions, are compared. It is found that, in a quiescent atmosphere, a change in the source directivity results in a variation up to 15 dB on the acoustic footprint. In the presence of the mean flow, the variation in the noise footprint can reach up to 35 dB. The results suggest that any variation in the source directivity and wind flow can cause a significant change in the acoustic footprint predicted in 3D environments with varying terrain topology and wind flow. Doctoral candidate, Wind Energy Department,
This paper presents a noise propagation approach based on the Gaussian beam tracing (GBT) method that accounts for multiple reflections over three-dimensional terrain topology and atmospheric refraction due to horizontal and vertical variability in wind velocity. A semi-empirical formulation is derived to reduce truncation error in the beam summation for receivers on the terrain surfaces. The reliability of the present GBT approach is assessed with an acoustic solver based on the finite element method (FEM) solutions of the convected wave equation. The predicted wavefields with the two methods are compared for different source-receiver geometries, urban settings, and wind conditions. When the beam summation is performed without the empirical formulation, the maximum difference is more than 40 dB; it drops below 8 dB with the empirical formulation. In the presence of wind, the direct and reflected waves can have different ray paths than those in a quiescent atmosphere, which results in less apparent diffraction patterns. A 17-fold reduction in computation time is achieved compared to the FEM solver. The results suggest that the present GBT acoustic propagation model can be applied to high-frequency noise propagation in urban environments with acceptable accuracy and better computational efficiency than full-wave solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.