The key to leak detection and location in water supply pipelines is signal denoising and feature extraction. First, in this paper, an improved spline-local mean decomposition (ISLMD) is proposed to eliminate noise interference. Based on the ISLMD decomposition of a signal, the cross-correlation function between the reference signal and the product functions component can be obtained. And then the PF component containing the leak information can be extracted reasonably. Compared with improved local mean decomposition, the ISLMD has higher accuracy in leak location. Second, an image recognition method using a convolutional neural network for leak detection is proposed, which can better address the problem that the features of different leak apertures or locations are highly similar to each other. The images from the conversion of the reconstructed signals are used as the input of the AlexNet model, which is capable of adaptive extraction of leak signal features. The trained AlexNet model can effectively detect different leak apertures. Finally, the signal time-delay between the upstream and downstream pressure transmitters caused by the leak and propagation of negative pressure wave is determined according to generalized crosscorrelation analysis, and thereby, the leak location is obtained. The experimental results show that the proposed method is effective for leak detection and location. INDEX TERMS Local mean decomposition, convolutional neural network, generalized cross-correlation, leak detection and location, fault detection.
Pipelines are one of the most efficient and economical methods of transporting fluids, such as oil, natural gas, and water. However, pipelines are often subject to leakage due to pipe corrosion, pipe aging, pipe weld defects, or damage by a third-party, resulting in huge economic losses and environmental degradation. Therefore, effective pipeline leak detection methods are important research issues to ensure pipeline integrity management and accident prevention. The conventional methods for pipeline leak detection generally need to extract the features of leak signal to establish a leak detection model. However, it is difficult to obtain actual leakage signal data samples in most applications. In addition, the operating modes of pipeline fluid transportation process often have frequent changes, such as regulating valves and pump operation. Aiming at these issues, this paper proposes a hybrid intelligent method that integrates kernel principal component analysis (KPCA) and cascade support vector data description (Cas-SVDD) for pipeline leak detection with multiple operating modes, using data samples that are leak-free during pipeline operation. Firstly, the local mean decomposition method is used to denoise and reconstruct the measured signal to obtain the feature variables. Then, the feature dimension is reduced and the nonlinear principal component is extracted by the KPCA algorithm. Secondly, the K-means clustering algorithm is used to identify multiple operating modes and then obtain multiple support vector data description models to obtain the decision boundaries of the corresponding hyperspheres. Finally, pipeline leak is detected based on the Cas-SVDD method. The experimental results show that the proposed method can effectively detect small leaks and improve leak detection accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.