Silver films with different morphologies were chemically deposited by controlling the bath composition. It is found that the wettability and surface enhanced Raman scattering (SERS) properties were closely connected with the surface morphology. Due to the perfect 3D morphology and the 3D electromagnetic field enhanced by three types of nanogaps distributed uniformly, the 3D microball/nanosheet (MN) silver film shows better SERS properties than those of 2D nanosheets (NSs) and nanoparticles (NPs). The MN silver film showed high adhesive superhydrophobic properties after an oxidation process without any functionalization. It can hold the liquid droplet and trace the target molecules in a rather small volume. The SERS properties of the oxidized MN substrate were enhanced remarkably compared to those of the freshly prepared substrate because of the concentrating effect of the superhydrophobicity. The as-prepared 3D MN silver substrate has also exhibited good performances in reproducibility and reutilization which makes it a promising substrate for molecule tracing.
Nanoscale zerovalent iron (nZVI) particles have received much attention in environmental science and technology due to their unique electronic and chemical properties. However, the aggregation and oxidation of nZVI brings much difficulty in practical application of environmental remediation. In this study, we reported a composite nano-Fe(0)/mesoporous carbon by a chelation-assisted coassembly and carbothermal reduction strategy. Nano-Fe(0) particles with surface iron oxide (Fe 2 O 3 •FeO) were wrapped with graphitic layers which were uniformly dispersed in mesoporous carbon frameworks. The unique structure made the nano-Fe(0) particles stable in air for more than 20 days. It was used as a peroxydisulfate (PDS) activator for the oxidation treatment of 2,4,6-trichlorophenol (TCP). The TOF value of MCFe for TCP degradation is nearly 3 times higher than those of FeSO 4 and Fe 2 O 3 •FeO and nearly 2 times than that of commercial nZVI. The reactive oxygen species (ROS) including •SO 4 − , HO•, and •O 2 − , 1 O 2 are efficiently generated by PDS activation with MCFe. The PDS activation process by nano-Fe(0) particles was intrinsically induced by the ferrous ions (Fe(II)) continuously generated at the solid/aqueous interface. Namely, the nano-Fe(0) particles were highly efficiently utilized in sulfate radical-based advanced oxidation processes (SR-AOP). The porous structure also assists the absorption and transfer of TCP during the degradation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.