Background. Chronic obstructive pulmonary disease (COPD) is becoming a major public health burden worldwide. It is urgent to explore more effective and safer treatment strategy for COPD. Notably, Xuefu Zhuyu Decoction (XFZYD) is widely used to treat respiratory system diseases, including COPD, in China. Objective. This study is aimed at comprehensively evaluating the therapeutic effects and molecular mechanism of XFZYD on COPD. Methods. Original clinical studies were searched from eight literature databases. Meta-analysis was conducted using the Review Manager software (version 5.4.1). Network pharmacology and molecular docking experiments were utilized to explore the mechanisms of action of XFZYD. Results. XFZYD significantly enhanced the efficacy of clinical treatment and improved the pulmonary function and hypoventilation of COPD patients. In addition, XFZYD significantly improved the hypercoagulability of COPD patients. The subgroup analysis suggested that XFZYD exhibited therapeutic effects on both stable and acute exacerbation of COPD. XFZYD exerted its therapeutic effects on COPD through multicomponent, multitarget, and multipathway characteristics. The intervention of the PI3K-AKT pathway may be the critical mechanism. Conclusion. The application of XFZYD based on symptomatic relief and supportive treatment is a promising clinical decision. More preclinical and clinical studies are still needed to evaluate the safety and therapeutic effects of long-term use of XFZYD on COPD.
Carthamus tinctorius L. (Honghua, HH) is an herbal medicine and functional food widely used to treat chronic liver diseases, including liver fibrosis. By using network pharmacology and molecular docking experiments, the present study aims to determine the bioactive components, potential targets, and molecular mechanisms of HH for treating liver fibrosis. The components of HH were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and literature, and the SwissTargetPrediction database was used to predict the treatment targets of HH. Genecards and DisGeNET databases contained targets for liver fibrosis, and the STRING database provided networks of protein–protein interactions. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using the Database of Annotation, Visualization and Integrated Discovery. The protein–protein interactive network and drug–component–major target–pathway interactive network were visualized and analyzed by Cytoscape software. Finally, Autodock Vina and Discovery Studio software were used for molecular docking Validation. A total of 23 candidate bioactive compounds with 187 treatment targets of HH were acquired from the databases and literature. A total of 121 overlapping targets between HH and liver fibrosis were found to provide the molecular basis for HH on liver fibrosis. Quercetin, beta carotene, and lignan were identified as key components with targeting to ESR1, PIK3CA, and MTOR. HH is engaged in the intervention of various signaling cascades associated with liver fibrosis, such as PI3K/AKT/mTOR pathway, MAPK pathway, and PPAR pathway. In conclusion, HH treats liver fibrosis through multi-component, multi-target, and multi-pathway mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.