Background Although the immune function of neutrophils in sepsis has been well described, the heterogeneity of neutrophils remains unclear during the process of sepsis. Methods In this study, we used a mouse CLP model to simulate the clinical scenario of patients with sepsis, neutrophil infiltration, abnormal distribution and dysfunction was analyzed. LPS was used to stimulate neutrophils in vitro to simulate sepsis; single-cell gene sequencing technology was used to explore the immunological typing. To explore the immunological function of immunosuppressive neutrophils, PD-L1 knockout neutrophils were cocultured with lymphocytes from wild-type mice. Results We found that neutrophils presented variant dysfunction at the late stage of sepsis, including inhibition of apoptosis, seriously damaged chemotaxis and extensive infiltration into the tissues. Single-cell RNA sequencing revealed that multiple subclusters of neutrophils were differentiated after LPS stimulation. The two-dimensional spatial distribution analysis showed that Foxp3+ T cells were much closer to Ly-6G than the CD4+ and CD8+ cells, indicating that infiltrated neutrophils may play immunomodulatory effect on surrounding T-regs. Further observations showed that LPS mediates PD-L1 over expression through p38α-MSK1/-MK2 pathway in neutrophils. The subsets of highly expressed PD-L1 exert immunosuppressive effect under direct contact mode, including inhibition of T cell activation and induction of T cell apoptosis and trans-differentiation. Conclusions Taken together, our data identify a previously unknown immunosuppressive subset of neutrophils as inhibitory neutrophil in order to more accurately describe the phenotype and characteristics of these cells in sepsis.
Low-density neutrophils (LDNs) have been described in tumors and various autoimmune diseases, where they exhibit immune dysfunction and alter disease progression. Nevertheless, LDNs have been rarely reported in sepsis. We studied sepsis patients admitted to the intensive care unit. Wright-Giemsa stain assay and Transmission electron microscopy were performed to detect the morphology of neutrophils. Flow cytometry was used to analyze the number and function of LDNs. Concentration of cytokines was measured using ELISA. Neutrophil chemotaxis was examined using an under-agarose chemotaxis model. We found that LDNs were significantly elevated in patients with sepsis. Phenotypes and morphological characteristics suggest that LDNs may be formed by mixtures of neutrophils at various maturation stages. In vitro experiments showed that LDN formation was closely associated with neutrophil degranulation. We preliminarily discussed changes in immune function in LDNs. Compared with high-density neutrophils, expression levels of CXC chemokine receptor 4 on LDN surfaces were increased, phagocytotic capacity was decreased, and life span was prolonged. The chemotactic ability of LDNs was significantly reduced, possibly related to the increased expression of P2X1. These data suggest that LDNs are essential components of neutrophils in sepsis. To clarify the source and dysfunction mechanism of LDN in sepsis may be helpful for the diagnosis and treatment of sepsis in the future.
The pathophysiological mechanisms, especially the roles of immune cells, underlying early stages of severe burn injury have not yet been fully clarified. Here, we analyzed circulating neutrophils (PMNs) in healthy donors and early burned patients by single-cell RNA sequencing to provide a comprehensive transcriptional landscape of PMNs in heterogeneity and functional multiplicity. Circulating PMNs in the healthy donors and burned groups were divided into five subgroups (G3, G4, G5a, G5b, G5c) with different functions. The dominant subsets of PMNs in homeostasis and burn injury significantly differed between groups. In addition, cells in the same subpopulation had the same core identity markers but performed different functions in healthy and burned states. Under burned conditions, PMN activation was very evident and accompanied by clear degranulation and metabolic abnormalities. Interestingly, was found that PMN activation, degranulation, chemotaxis, phagocytosis and reactive oxygen species (ROS) production in burned patients significantly differed between day 1 and days 2 or 3, thus providing a theoretical basis for PMN interventions in early burn stages. Significantly, previously undescribed transcription factors were also identified, including ZNF-787, ZNF-467, ZNF-189, ZNF-770, ZNF-262. In conclusion, this study conducted for the first time a detailed analysis of the heterogeneity and functional multiplicity of PMNs in early stages of severe burn injuries. Our findings attempted to clarify the influence of PMN heterogeneity on the pathophysiology and related mechanisms of burn injuries, which can provide new ideas for further research in burn intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.