One of the great challenges in metal-enhanced fluorescence (MEF) technology is the achievement of distance modulation with nanometer accuracy between the fluorophore and metal surface to obtain maximum enhancement. We propose an MEF-based core-shell Ag@SiO2 nanoflare for distance control via the thickness of silica shell with cooperation of DNA hybridization. The nanoflare contains a 50 nm spherical silver nanoparticle (Ag NP) core, a 8 nm silica shell, and cyanine (Cy5)-labeled aptamer hybridized with a complementary DNA (cDNA) immobilized onto the shell surface. The formation of the Cy5-labeled aptamer/cDNA duplex on the Ag@SiO2 NP surface results in the confinement of Cy5 to the shell surface and an increase in the fluorescence of Cy5 with a 32-fold enhancement factor in bulk solution (signal-on). In the presence of affinity-binding targets, the Cy5-labeled aptamers confined onto the Ag@SiO2 NP surface dissociate from their cDNA into the solution because of structure switching. The target-induced release of aptamer leads to a reduction in the enhanced fluorescence signal of the labeled Cy5 moiety (signal-off). Thus, the nanoflare can be used as a sensor for target recognition. Using adenosine-5'-triphosphate (ATP) aptamer, detection of ATP has a linear response from 0 to 0.5 mM and a detection limit of 8 μM. With various types of DNA probes immobilized onto the core-shell Ag@SiO2 NPs, the MEF-based nanoflare has provided an effective platform for the detection and quantification of a broad range of analytes, such as mRNA regulation and detection, cell sorting, and gene profiling.
We have developed a fluorescence turn-on assay using DNA-templated silver nanoclusters (Ag NCs) (i.e., 12 polycytosine-templated silver nanoclusters, dC12-Ag NCs), which is amenable to rapid, ultrasensitive assay of acetylcholinesterase (AChE). The detection mechanism is based on the concept, that is, AChE hydrolyzes the acetylthiocholine (ATCh) chloride to produce thiocholine (TCh). Subsequently, TCh sensitively and rapidly reacts with dC12-Ag NCs via Ag-S bond forming and enhances the fluorescence of dC12-Ag NCs. Using dC12-Ag NCs, detection of TCh has a linear concentration range of 2.0 nM to 16.0 nM and a detection limit of 0.3 nM. Due to the sensitive and rapid fluorescence turn-on response of dC12-Ag NCs to TCh, AChE with activity as low as 0.5 × 10(-4) U/mL (signal/noise = 3) can be analyzed with a dynamic range of 0.1 to 1.25 × 10(-3) U/mL. The promising application of the proposed method in AChE inhibitor screening was demonstrated. AChE concentrations were determined in human blood red cell (RBC) membranes from clinical specimens using dC12-Ag NCs, and the quantitative results were validated with Ellman's method. Aside from the ease of manufacture, reduction of matrix effect, and low background noise, the continuous detection format and detection sensitivity can open up to wider applications to AChE activity assay in neurobiology, toxicology, and pharmacology, among other fields.
A potential real-time imaging water-soluble fluorescent polymer (P3) is facilely prepared via one-pot method. For P3, tetraphenylethene unit serves as the fluorescent unit, poly(acryloyl ethylene diamine) (a kind of polyelectrolyte) with specific degree of polymerization acts as water-soluble part. H-NMR, gel permeation chromatography (GPC), UV-vis spectroscopy, photoluminescence (PL), and confocal laser scanning microscopy are undertaken to characterize the structure and property of P3. The results of wash-free cellular imaging show that the signal-to-noise ratio is high as the concentration of P3 is 50 μg mL . In addition, the pH-responsive and Cd -responsive are also investigated in this paper. The results coming from pH-responsive show that P3 solution displays significant fluorescence under near neutral. And the result from the cellular imaging shows that intracellular fluorescence intensity enhances with the augment of concentration of Cd , which reveals that P3 can give a hint to resolve the dilemma of traditional fluorescent dyes used as living cellular fluorescent probe.
Thiolated DNA (DNA-SH) was employed as a template in the synthesis and stabilization of AgNCs (DNA-SH-AgNCs). Resulting from the synergistic protective effect of specific Ag-DNA interactions and Ag-S bonding, DNA-SH-AgNCs exhibited high quantum yields and resistance to oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.