User-generated content (UGC) is an important data source for tourism GIScience research. However, no effective approach exists for identifying hidden spatiotemporal patterns within multi-scale unstructured UGC. Therefore, we developed an algorithm to measure the tourist destination popularity (TDP) based on a multi-spatiotemporal text granular computing model, called TDPMTGC. To accurately granulate the spatial and temporal information of tourism text, tourism text data granules are used to represent landscape objects. These granules are unified objects that possess multiple attributes, such as spatial and temporal dimensions. The multi-spatiotemporal scales are characterized by the multi-hierarchical structure of granular computing, and transformations of granular layers and data granule size are achieved by scale selection in the spatial and temporal dimensions. Therefore, all scales between the spatial and temporal dimension are related, which allows for the comparability of the data granules of all spatial-spatial, temporal-temporal and spatial-temporal layers. This approach achieves a quantitative description and comparison of the popularity value of granules between adjacent scales and cross-scales. Therefore, the TDP with multispatiotemporal scales can be deduced and calculated in a systematic framework. We first introduce the conceptual framework of TDPMTGC to construct a quantitative measurement model of TDP at multi-spatiotemporal scales. Then, we present a dataset construction approach to support multi-spatiotemporal scale granular reorganization. Finally, TDPMTGC is derived to describe both the TDP at a single spatial or temporal scale and the patterns and processes of the TDP at multi-spatiotemporal scales. A case study from Jiuzhaigou shows that the TDP derived using TDPMTGC is consistent with the conclusions of existing studies. More importantly, TDPMTGC provides additional detailed characteristics, such as the contributions of different scenic spots in a tourist route or scenic area, the monthly anomalies and daily contributions of TDP in a specific year, the distinct weakening of tourist route scale in tourist cognition, and the daily variations of TDP during in-season and off-season times. This is the first time that a granular computing model has been introduced to tourism GIScience that provides a feasible scheme for reorganizing large-scale unstructured text
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.