Rechargeable lithium metal batteries are next generation energy storage devices with high energy density, but face challenges in achieving high energy density, high safety, and long cycle life. Here, lithium metal batteries in a novel nonflammable ionic‐liquid (IL) electrolyte composed of 1‐ethyl‐3‐methylimidazolium (EMIm) cations and high‐concentration bis(fluorosulfonyl)imide (FSI) anions, with sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) as a key additive are reported. The Na ion participates in the formation of hybrid passivation interphases and contributes to dendrite‐free Li deposition and reversible cathode electrochemistry. The electrolyte of low viscosity allows practically useful cathode mass loading up to ≈16 mg cm−2. Li anodes paired with lithium cobalt oxide (LiCoO2) and lithium nickel cobalt manganese oxide (LiNi0.8Co0.1Mn0.1O2, NCM 811) cathodes exhibit 99.6–99.9% Coulombic efficiencies, high discharge voltages up to 4.4 V, high specific capacity and energy density up to ≈199 mAh g−1 and ≈765 Wh kg−1 respectively, with impressive cycling performances over up to 1200 cycles. Highly stable passivation interphases formed on both electrodes in the novel IL electrolyte are the key to highly reversible lithium metal batteries, especially for Li–NMC 811 full batteries.
Fatigue resistance is a key property of the service lifetime of structural materials. Carbon nanotubes (CNTs) are one of the strongest materials ever discovered, but measuring their fatigue resistance is a challenge because of their size and the lack of effective measurement methods for such small samples. We developed a noncontact acoustic resonance test system for investigating the fatigue behavior of centimeter-long individual CNTs. We found that CNTs have excellent fatigue resistance, which is dependent on temperature, and that the time to fatigue fracture of CNTs is dominated by the time to creation of the first defect.
Energy storage in a proper form is an important way to meet the fast increase in the demand for energy. Among the strategies for storing energy, storage of mechanical energy via suitable media is widely utilized by human beings. With a tensile strength over 100 GPa, and a Young's modulus over 1 TPa, carbon nanotubes (CNTs) are considered as one of the strongest materials ever found and exhibit overwhelming advantages for storing mechanical energy. For example, the tensile‐strain energy density of CNTs is as high as 1125 Wh kg‐1. In addition, CNTs also exhibit great potential for fabricating flywheels to store kinetic energy with both high energy density (8571 Wh kg‐1) and high power density (2 MW kg‐1 to 2 GW kg‐1). Here, an overview of some typical mechanical‐energy‐storage systems and materials is given. Then, theoretical and experimental studies on the mechanical properties of CNTs and CNT assemblies are introduced. Afterward, the strategies for utilizing CNTs to store mechanical energy are discussed. In addition, macroscale production of CNTs is summarized. Finally, future trends and prospects in the development of CNTs used as mechanical‐energy‐storage materials are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.