Changes in atmospheric CO
2
concentration have played a central role in algal and plant adaptation and evolution. The commercially important red algal genus,
Pyropia
(Bangiales) appears to have responded to inorganic carbon (C
i
) availability by evolving alternating heteromorphic generations that occupy distinct habitats. The leafy gametophyte inhabits the intertidal zone that undergoes frequent emersion, whereas the sporophyte conchocelis bores into mollusk shells. Here, we analyze a high-quality genome assembly of
Pyropia yezoensis
to elucidate the interplay between C
i
availability and life cycle evolution. We find horizontal gene transfers from bacteria and expansion of gene families (e.g. carbonic anhydrase, anti-oxidative related genes), many of which show gametophyte-specific expression or significant up-regulation in gametophyte in response to dehydration. In conchocelis, the release of HCO
3
-
from shell promoted by carbonic anhydrase provides a source of C
i
. This hypothesis is supported by the incorporation of
13
C isotope by conchocelis when co-cultured with
13
C-labeled CaCO
3
.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.