l e t t e r sHow an insect evolves to become a successful herbivore is of profound biological and practical importance. Herbivores are often adapted to feed on a specific group of evolutionarily and biochemically related host plants 1 , but the genetic and molecular bases for adaptation to plant defense compounds remain poorly understood 2 . We report the first whole-genome sequence of a basal lepidopteran species, Plutella xylostella, which contains 18,071 protein-coding and 1,412 unique genes with an expansion of gene families associated with perception and the detoxification of plant defense compounds. A recent expansion of retrotransposons near detoxification-related genes and a wider system used in the metabolism of plant defense compounds are shown to also be involved in the development of insecticide resistance. This work shows the genetic and molecular bases for the evolutionary success of this worldwide herbivore and offers wider insights into insect adaptation to plant feeding, as well as opening avenues for more sustainable pest management.The global pest P. xylostella (Lepidoptera: Yponomeutidae) is thought to have coevolved with the crucifer plant family 3 ( Supplementary Fig. 1) and has become the most destructive pest of economically important food crops, including rapeseed, cauliflower and cabbage 4 . Recently, the total cost of damage and management worldwide was estimated at $4-5 billion per annum 5,6 . This insect is the first species to have evolved resistance to dichlorodiphenyltrichloroethane (DDT) in the 1950s 7 and to Bacillus thuringiensis (Bt) toxins in the 1990s 8 and has developed resistance to all classes of insecticide, making it increasingly difficult to control 9,10 . P. xylostella provides an exceptional system for understanding the genetic and molecular bases of how insect herbivores cope with the broad range of plant defenses and chemicals encountered in the environment (Supplementary Fig. 2).We used a P. xylostella strain (Fuzhou-S) collected from a field in Fuzhou in southeastern China (26.08 °N, 119.28 °E) for sequencing ( Supplementary Fig. 1). Whole-genome shotgun-based Illumina sequencing of single individuals (Supplementary Table 1), even after ten generations of laboratory inbreeding, resulted in a poor initial assembly (N50 = 2.4 kb, representing the size above which 50% of the total length of the sequences is included), owing to high levels of heterozygosity ( Supplementary Figs. 3 and 4 and Supplementary Table 2). Subsequently, we sequenced 100,800 fosmid clones (comprising ~10× the genome length) to a depth of 200× ( Supplementary Fig. 5 and Supplementary Tables 3-5), assembling the resulting sequence data into 1,819 scaffolds, with an N50 of 737 kb, spanning ~394 Mb of the genome sequence (version 1; Supplementary Fig. 6 and Supplementary Table 6). The assembly covered 85.5% of a set of protein-coding ESTs (Supplementary Tables 7 and 8) generated by transcriptome sequencing 11 . Alignment of a subject scaffold against a 126-kb BAC (GenBank GU058050) from an altern...
BackgroundGlutathione S-transferases (GSTs) are multifunctional detoxification enzymes that play important roles in insects. The completion of several insect genome projects has enabled the identification and characterization of GST genes over recent years. This study presents a genome-wide investigation of the diamondback moth (DBM), Plutella xylostella, a species in which the GSTs are of special importance because this pest is highly resistant to many insecticides.ResultsA total of 22 putative cytosolic GSTs were identified from a published P. xylostella genome and grouped into 6 subclasses (with two unclassified). Delta, Epsilon and Omega GSTs were numerically superior with 5 genes for each of the subclasses. The resulting phylogenetic tree showed that the P. xylostella GSTs were all clustered into Lepidoptera-specific branches. Intron sites and phases as well as GSH binding sites were strongly conserved within each of the subclasses in the GSTs of P. xylostella. Transcriptome-, RNA-seq- and qRT-PCR-based analyses showed that the GST genes were developmental stage- and strain-specifically expressed. Most of the highly expressed genes in insecticide resistant strains were also predominantly expressed in the Malpighian tubules, midgut or epidermis.ConclusionsTo date, this is the most comprehensive study on genome-wide identification, characterization and expression profiling of the GST family in P. xylostella. The diversified features and expression patterns of the GSTs are inferred to be associated with the capacity of this species to develop resistance to a wide range of pesticides and biological toxins. Our findings provide a base for functional research on specific GST genes, a better understanding of the evolution of insecticide resistance, and strategies for more sustainable management of the pest.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1343-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.