Speed profile optimization plays an important role in optimal train control. Considering the characteristics of an electrical locomotive with regenerative braking, this paper proposes a new algorithm for target speed profile approximation. This paper makes the following three contributions: First, it proves that under a certain calculation precision, there is an optimal coast-brake switching region-not just a point where the train should be switched from coasting mode to braking mode. This is very useful in engineering applications. Second, the paper analyzes the influence of regenerative braking on the optimal coast-brake switching region and proposes an approximate linear relationship between the optimal switching region and the regeneration efficiency. Third, the paper presents an average speed equivalent algorithm for local speed profile optimization in steep sections. In addition, this paper simplifies the proof of the optimality of smooth running on a non-steep track in two steps. The effects on energy consumption from two important factors (optimal coast and running time) are systematically analyzed. Extensive simulations verify these points of view and demonstrate that the proposed approximation approach is computationally efficient and achieves sufficient engineering accuracy.
Abstract:Roller bearing plays a significant role in industrial sectors. To improve the ability of roller bearing fault diagnosis under multi-rotating situation, this paper proposes a novel roller bearing fault characteristic: the Amplitude Modulation (AM) based correntropy extracted from the Intrinsic Mode Functions (IMFs), which are decomposed by Fast Ensemble Empirical mode decomposition (FEEMD) and employ Least Square Support Vector Machine (LSSVM) to implement intelligent fault identification. Firstly, the roller bearing vibration acceleration signal is decomposed by FEEMD to extract IMFs. Secondly, IMF correntropy matrix (IMFCM) as the fault feature matrix is calculated from the AM-correntropy model of the primary vibration signal and IMFs. Furthermore, depending on LSSVM, the fault identification results of the roller bearing are obtained. Through the bearing identification experiments in stationary rotating conditions, it was verified that IMFCM generates more stable and higher diagnosis accuracy than conventional fault features such as energy moment, fuzzy entropy, and spectral kurtosis. Additionally, it proves that IMFCM has more diagnosis robustness than conventional fault features under cross-mixed roller bearing operating conditions. The diagnosis accuracy was more than 84% for the cross-mixed operating condition, which is much higher than the traditional features. In conclusion, it was proven that FEEMD-IMFCM-LSSVM is a reliable technology for roller bearing fault diagnosis under the constant or multi-positioned operating conditions, and as such, it possesses potential prospects for a broad application of uses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.