Availability of relativistically intense, single-cycle, tunable infrared sources will open up new areas of relativistic nonlinear optics of plasmas, impulse IR spectroscopy and pump-probe experiments in the molecular fingerprint region. However, generation of such pulses is still a challenge by current methods. Recently, it has been proposed that time dependent refractive index associated with laser-produced nonlinear wakes in a suitably designed plasma density structure rapidly frequency down-converts photons. The longest wavelength photons slip backwards relative to the evolving laser pulse to form a single-cycle pulse within the nearly evacuated wake cavity. This process is called photon deceleration. Here, we demonstrate this scheme for generating high-power (~100 GW), near single-cycle, wavelength tunable (3-20 µm), infrared pulses using an 810 nm drive laser by tuning the density profile of the plasma. We also demonstrate that these pulses can be used to in-situ probe the transient and nonlinear wakes themselves.
Micro-focus computed tomography (CT), enabling the reconstruction of hyperfine structure within objects, is a powerful nondestructive testing tool in many fields. Current X-ray sources for micro-focus CT are typically limited by their relatively low photon energy and low flux. An all-optical inverse Compton scattering source (AOCS) based on laser wakefield accelerator (LWFA) can generate intense quasimonoenergetic X/gamma-ray pulses in the keV-MeV range with micron-level source size, and its potential application for micro-focus CT has become very attractive in recent years due to the fast pace progress made in LWFA. Here we report the first experimental demonstration of high-fidelity micro-focus CT using AOCS (~70 keV) by imaging and reconstructing a test object with complex inner structures. A region-ofinterest (ROI) CT method is adopted to utilize the relatively small field-of-view (FOV) of AOCS to obtain high-resolution reconstruction. This demonstration of the ROI micro-focus CT based on AOCS is a key step for its application in the field of hyperfine nondestructive testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.