The medicinal properties of curcumin are well documented in Indian and Chinese systems of medicine, which refer to its wide use in the treatment of some diseases. It has shown to have anti-carcinogenic properties and is known to prevent tumor development in some cancers. In our study, we confirmed that the expression of miR-15a and miR-16 was upregulated and that of Bcl-2 was downregulated in curcumin-treated MCF-7 cells. Silencing miR-15a and miR-16 by specific inhibitors restored the expression of Bcl-2. Thus, we concluded that curcumin can reduce the expression of Bcl-2 by upregulating the expression of miR-15a and miR-16 in MCF-7 cells.
BackgroundCartilage degradation is a typical characteristic of arthritis. This study examined whether there was a subset of phagocytic chondrocytes that expressed the specific macrophage marker, CD163, and investigated their role in cartilage degradation.MethodsCartilage from the knee and temporomandibular joints of Sprague-Dawley rats was harvested. Cartilage degradation was experimentally-induced in rat temporomandibular joints, using published biomechanical dental methods. The expression levels of CD163 and inflammatory factors within cartilage, and the ability of CD163+ chondrocytes to conduct phagocytosis were investigated. Cartilage from the knees of patients with osteoarthritis and normal cartilage from knee amputations was also investigated.ResultsIn the experimentally-induced degrading cartilage from temporomandibular joints, phagocytes were capable of engulfing neighboring apoptotic and necrotic cells, and the levels of CD163, TNF-α and MMPs were all increased (P<0.05). However, the levels of ACP-1, NO and ROS, which relate to cellular digestion capability were unchanged (P>0.05). CD163+ chondrocytes were found in the cartilage mid-zone of temporomandibular joints and knee from healthy, three-week old rats. Furthermore, an increased number of CD163+ chondrocytes with enhanced phagocytic activity were present in Col-II+ chondrocytes isolated from the degraded cartilage of temporomandibular joints in the eight-week experimental group compared with their age-matched controls. Increased number with enhanced phagocytic activity of CD163+ chondrocytes were also found in isolated Col-II+ chondrocytes stimulated with TNF-α (P<0.05). Mid-zone distribution of CD163+ cells accompanied with increased expression of CD163 and TNF-α were further confirmed in the isolated Col-II+ chondrocytes from the knee cartilage of human patients with osteoarthritis, in contrast to the controls (both P<0.05).ConclusionsAn increased number of CD163+ chondrocytes with enhanced phagocytic activity were discovered within degraded joint cartilage, indicating a role in eliminating degraded tissues. Targeting these cells provides a new strategy for the treatment of arthritis.
Manganese has long been known to induce neurological degenerative disorders. Emerging evidence indicates that hyperphosphorylated tau is associated with neurodegenerative diseases, but whether such hyperphosphorylation plays a role in manganese-induced neurotoxicity remains unclear. To fill this gap, we investigated the effects of manganese on tau phosphorylation in PC12 cells. In our present research, treatment of cells with manganese increased the phosphorylation of tau at Ser199, Ser202, Ser396, and Ser404 as detected by Western blot. Moreover, this manganese-induced tau phosphorylation paralleled the activation of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK). The mitogen-activated protein kinase kinase-1 (MEK1) inhibitor PD98059, which inhibits the activation of ERK MAPK, partially attenuated manganese-induced tau hyperphosphorylation and cytotoxicity. Moreover, the activation of ERK MAPK was involved in the activation of glycogen synthase kinase-3β (GSK-3β) kinase, which also contributed to the hyperphosphorylation of tau and the cytotoxicity in PC12 cells induced by manganese. Taken together, we found for the first time that the exposure to manganese can cause the hyperphosphorylation of tau, which may be connected with the activation of ERK MAPK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.