Flexibility and mechanical performance are essential for transparent silicone materials applied in some optical and electronic devices; however, the tensile strength of transparent silicone materials is fairly low. To overcome this problem, a kind of UV-cured transparent flexible silicone material with quite a high tensile strength and elongation at break was developed through UV-initiated thiol− ene reaction by hyperbranched silicon-containing polymers (HBPs) with a thiol substitute and acrylate-terminated polyurethanes. Unexpectedly, it is found that both the tensile strength and elongation at break of the transparent silicone materials are extraordinarily high, which can reach 3.40 MPa and 270.0%, respectively. The UV-cured materials have good UV resistance ability because their transmittance is still as high as 93.4% (800 nm) even when aged for 40 min in a UV chamber of 10.6 mW cm −2 . They exhibit outstanding adhesion to substrates, and the adhesion to a glass slide, wood, and a tin plate is grade 1. The promising results encourage us to further improve the mechanical performance of flexible transparent silicone materials by effective chemical modification strategies with HBPs. An attempt was made to apply the UV-cured materials in a Gel-Pak box and it could be proved that the UV-cured materials may be one of the good candidates for use as packaging or protecting materials of optical or electronics devices such as the Gel-Pak product.
The conventional polyurethane (PU) coatings have poor heat resistance, which will undergo severe pyrolysis when the temperature exceeds 200 °C. To overcome the shortcoming of conventional PU coatings, an ultraviolet (UV)-cured solvent-free hyperbranched polycarbosilane modified PU coatings was prepared by sulfhydryl-terminated polyurethane and allyl-terminated hyperbranched polycarbosilane. The initial decomposition temperature (Td5%) of the UV-cured coating ranges from 258 to 268 °C, which is obviously higher than those of the conventional PU coatings reported. The coating shows fairly low water absorption in the range of 0.6–1.36 wt% and exhibits grade 1, grade 2 and grade 3 adhesion to glass, tin plate and aluminum sheet, respectively.
To
improve thermal stability and hardness of UV-cured materials,
a series of UV-cured solvent-free coatings were prepared from allyl-terminated
hyperbranched polycarbosilanes and thiol silicone resins. The silicone
coatings prepared have pencil hardness of 4–9 H, water absorption
no more than 0.04 wt %, and transmittance higher than 94%. The temperature
for the coatings’ starting thermal decomposition is higher
than 236 °C; especially, that of the coating prepared with G1
is as high as 371.1 °C. The UV-cured coatings in this work exhibit
much higher pencil hardness than and superior thermal stability to
those reported previously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.