Previous studies have shown that high glucose stimulates renal SREBP-1 gene expression and increases renal tubular cells lipid metabolism, however, the mechanisms remain elusive. In the present study we demonstrated that PI3K/Akt pathway was activated in human renal proximal tubular cell line (HKC) exposed to high glucose accompanied with up-regulation of SREBP-1, TGF-β1, lipid droplets deposits and extracellular matrix production. Inhibition of PI3K/Akt pathway by chemical LY294002 or specific short hairpin RNA (shRNA) vector prevented SREBP-1 and TGF-β1 up-regulation, as well as ameliorated HKC cells lipogenesis and extracellular matrix accumulation. These findings indicate that PI3K/Akt pathway potentially mediates high glucose-induced lipogenesis and extracellular matrix accumulation in HKC cells.
Making use of the steam heat storage in thermal generators enables them to operate in a "fast mode" to ramp up or down faster than regular, so as to better catch up with the fluctuations of wind power to improve system wind utilization. In such fast mode, generators have output dependent ramp rates and, distinguished from regular units, output and ramp rate dependent coal consumption costs. These fast generators cannot be properly described by using existing economic dispatch models, where generators usually have output dependent cost functions and constant ramp rate limits. This paper presents a new formulation and solution methodology of dynamic economic dispatch for wind-thermal power systems, to take into account ramping capabilities and costs of generators in their fast mode. In our model, the objective is to minimize a two-variable quadratic generator cost function depending on both output levels and ramp rates, and generator ramp rate limits are output dependent piece-wise linear functions. The model is solved by using existing quadratic programming methods, and is demonstrated by using numerical examples on the IEEE 30-bus system containing two 600MW thermal units with practical data. Results show that by using our model, unit ramping capabilities are better utilized in system dispatch to substantially save curtailed wind energy, and total generator costs are reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.