Little is currently known about the alterations in the topological organization of the white matter (WM) structural networks in patients with multiple sclerosis (MS). In the present study, we used diffusion tensor imaging and deterministic tractography to map the WM structural networks in 39 MS patients and 39 age- and gender-matched healthy controls. Graph theoretical methods were applied to investigate alterations in the network efficiency in these patients. The MS patients and the controls exhibited efficient small-world properties in their WM structural networks. However, the global and local network efficiencies were significantly decreased in the MS patients compared with the controls, with the most pronounced changes observed in the sensorimotor, visual, default-mode, and language areas. Furthermore, the decreased network efficiencies were significantly correlated with the expanded disability status scale scores, the disease durations, and the total WM lesion loads. Together, the results suggest a disrupted integrity in the large-scale brain systems in MS, thus providing new insights into the understanding of MS connectome. Our data also suggest that a topology-based brain network analysis can provide potential biomarkers for disease diagnosis and for monitoring the progression and treatment effects for patients with MS.
Symptomatic intracranial arterial stenosis (SIAS) is very common in octo-and nonagenarians, especially in the Chinese population, and is likely the most common cause of stroke recurrence worldwide. Clinical trials demonstrate that endovascular treatment, such as stenting, may not be suitable for octogenarians with systemic diseases. Hence, less invasive methods for the octogenarian patients are urgently needed. Our previous study (unique identifier: NCT01321749) showed that repetitive bilateral arm ischemic preconditioning (BAIPC) reduced the incidence of stroke recurrence by improving cerebral perfusion (confirmed by single photon emission computed tomography and transcranial Doppler sonography) in patients younger than 80 years of age; however, the safety and effectiveness of BAIPC on stroke prevention in octo-and nonagenarians with SIAS are still unclear. The objective of this study was to evaluate the safety and effectiveness of BAIPC in reducing stroke recurrence in octo-and nonagenarian patients with SIAS. Fifty-eight patients with SIAS were enrolled in this randomized controlled prospective study for 180 consecutive days. All patients enrolled in the study received standard medical management. Patients in the BAIPC group (n=30) underwent 5 cycles consisting of bilateral arm ischemia followed by reperfusion for 5 min each twice daily. Those in the control group (n=28) underwent sham-BAIPC twice daily. Blood pressure, heart rate, local skin status, plasma myoglobin, and plasma levels of thrombotic and inflammatory markers were documented in both groups before beginning the study and for the first 30 days. Finally, the incidences of stroke recurrence and magnetic resonance imaging during the 180 days of treatment were compared. Compared with the control, BAIPC had no adverse effects on blood pressure, heart rate, local skin integrity, or plasma myoglobin, and did not induce cerebral hemorrhage in the studied cohort. BAIPC reduced plasma high sensitive C-reactive protein, interleukin-6, plasminogen activator inhibitor-1, leukocyte count, and platelet aggregation rate and elevated plasma tissue plasminogen activator (all p<0.01). In 180 days, 2 infarctions and 7 transient ischemic attacks were observed in the BAIPC group compared with 8 infarctions and 11 transient ischemic attacks in the sham BAIPC group (p<0.05). BAIPC may safely inhibit stroke recurrence, protect against brain ischemia, and ameliorate plasma biomarkers of inflammation and coagulation in octo-and nonagenarians with SIAS. A multicenter trial is ongoing.Clinical Trial Registration: www.clinicaltrials.gov, unique identifier: NCT01570231.
Alzheimer's disease (AD) is increasingly recognized as a disconnection syndrome, which leads to cognitive impairment due to the disruption of functional activity across large networks or systems of interconnected brain regions. We explored abnormal functional magnetic resonance imaging (fMRI) resting-state dynamics, functional connectivity, and weighted functional networks, in a sample of patients with severe AD (N = 18) and age-matched healthy volunteers (N = 21). We found that patients had reduced amplitude and regional homogeneity of low-frequency fMRI oscillations, and reduced the strength of functional connectivity, in several regions previously described as components of the default mode network, for example, medial posterior parietal cortex and dorsal medial prefrontal cortex. In patients with severe AD, functional connectivity was particularly attenuated between regions that were separated by a greater physical distance; and loss of long distance connectivity was associated with less efficient global and nodal network topology. This profile of functional abnormality in severe AD was consistent with the results of a comparable analysis of data on 2 additional groups of patients with mild AD (N = 17) and amnestic mild cognitive impairment (MCI; N = 18). A greater degree of cognitive impairment, measured by the mini-mental state examination across all patient groups, was correlated with greater attenuation of functional connectivity, particularly over long connection distances, for example, between anterior and posterior components of the default mode network, and greater reduction of global and nodal network efficiency. These results indicate that neurodegenerative disruption of fMRI oscillations and connectivity in AD affects long-distance connections to hub nodes, with the consequent loss of network efficiency. This profile was evident also to a lesser degree in the patients with less severe cognitive impairment, indicating that the potential of resting-state fMRI measures as biomarkers or predictors of disease progression in AD.
The salience network (SN) serves to identify salient stimuli and to switch between the central executive network (CEN) and the default-mode network (DMN), both of which are impaired in Alzheimer's disease (AD)/amnestic mild cognitive impairment (aMCI). We hypothesized that both the structural and functional organization of the SN and functional interactions between the SN and CEN/DMN are altered in normal aging and in AD/aMCI. Gray matter volume (GMV) and resting-state functional connectivity (FC) were analyzed from healthy younger (HYC) to older controls (HOC) and from HOC to aMCI and AD patients. All the SN components showed significant differences in the GMV, intranetwork FC, and internetwork FC between the HYC and HOC. Most of the SN components showed differences in the GMV between the HOC and AD and between the aMCI and AD. Compared with the HOC, AD patients exhibited significant differences in intra- and internetwork FCs of the SN, whereas aMCI patients demonstrated differences in internetwork FC of the SN. Most of the GMVs and internetwork FCs of the SN and part of the intranetwork FC of the SN were correlated with cognitive differences in older subjects. Our findings suggested that structural and functional impairments of the SN may occur as early as in normal aging and that functional disconnection between the SN and CEN/ DMN may also be associated with both normal aging and disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.