Molecular mechanism and key factors responsible for cytotoxicity against mycotoxin deoxynivalenol (DON) from Fusarium pathogens are rarely elucidated. In this study, rapid increases of ROS were first observed in human gastric epithelial (GES-1) cells under DON exposure. Mitochondrial DNA damage, impaired respiratory chain, and decreased oxygen consumption rate (OCR) values, as well as G2/M cell cycle arrest and apoptosis, were also detected. Via combinatorial approaches of a large-scale microarray of differentially expressed genes, high content and RNAi analysis, a transcription factor of Forkhead box O3 (FOXO3a) was found with crucial functionalities, regulated some apoptotic genes associated with mitochondrial toxicity and cell death after activation by nuclear translocation. Namely, knockdown of FOXO3a decreased the cytotoxicity of DON to GES-1 cells. Moreover, knockdown of the FOXO ortholog DAF16 in Caenorhabditis elegans increased the resistance to DON-induced cytotoxicity. Simultaneously, the signaling pathway of ROS/JNK/FOXO3a of DON-induced cytotoxicity was newly proposed. In total, FOXO3a via ROS/JNK/FOXO3a plays a critical role to function as negative regulator associating with DON-induced cytotoxicity, with the potential extending to other substances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.