Although great efforts have been devoted to the synthesis of halide perovskites nanostructures, vapor growth of high-quality one-dimensional cesium lead halide nanostructures for tunable nanoscale lasers is still a challenge. Here, we report the growth of high-quality all-inorganic cesium lead halide alloy perovskite micro/nanorods with complete composition tuning by vapor-phase deposition. The as-grown micro/nanorods are single-crystalline with a triangular cross section and show strong photoluminescence which can be tuned from 415 to 673 nm by varying the halide composition. Furthermore, these single-crystalline perovskite micro/nanorods themselves function as effective Fabry-Perot cavities for nanoscale lasers. We have realized room-temperature tunable lasing of cesium lead halide perovskite with low lasing thresholds (∼14.1 μJ cm) and high Q factors (∼3500).
Currently, a novel coronavirus named “SARS-CoV-2” is spreading rapidly across the world, causing a public health crisis, economic losses, and panic. Fecal–oral transmission is a common transmission route for many viruses, including SARS-CoV-2. Blocking the path of fecal–oral transmission, which occurs commonly in toilet usage, is of fundamental importance in suppressing the spread of viruses. However, to date, efforts at improving sanitary safety in toilet use have been insufficient. It is clear from daily experience that flushing a toilet generates strong turbulence within the bowl. Will this flushing-induced turbulent flow expel aerosol particles containing viruses out of the bowl? This paper adopts computational fluid dynamics to explore and visualize the characteristics of fluid flow during toilet flushing and the influence of flushing on the spread of virus aerosol particles. The volume-of-fluid (VOF) model is used to simulate two common flushing processes (single-inlet flushing and annular flushing), and the VOF–discrete phase model (DPM) method is used to model the trajectories of aerosol particles during flushing. The simulation results are alarming in that massive upward transport of virus particles is observed, with 40%–60% of particles reaching above the toilet seat, leading to large-scale virus spread. Suggestions concerning safer toilet use and recommendations for a better toilet design are also provided.
MicroRNAs (miRNAs, also miR) are a class of noncoding endogenous RNAs that regulate gene expression through binding to protein-coding messenger RNA (mRNA) molecules, predominantly within the 3'-untranslated region (3'-UTR). Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that regulates a battery of genes involved in regulating a variety of biological processes. There is a growing body of evidence demonstrating that miRNAs are closely associated with the STAT3 signaling pathway. In this review, we focus on interactions between miRNAs and the STAT3 signaling pathway, focusing on their reciprocal regulation and roles in cancer. For instance, several papers independently support the existence of regulatory feedback loops between miRNAs and the STAT3 pathway in different cancer contexts including IL-6-STAT3-miR-24/miR-629-HNF4α-miR-124 and IL-6R-STAT3-NF-κB-Lin-28-let-7a. Furthermore, several miRNA components are reported to be involved in STAT3-mediated tumorigenesis, for example miR-21, miR-155, and miR-181b. Through binding to STAT3-binding sites within the promoters of these oncomiRs, STAT3 activates their transcription and mediates tumorigenesis. Some miRNAs directly modulate STAT3 activity through targeting the STAT3 3'-UTR; other miRNAs target SOCS, PIAS3, and EGFR genes, which encode proteins that regulate the STAT3 signaling pathway. Given that miRNAs represent a newly discovered class of regulatory molecules, investigating their biological functions and contribution to pathologies caused by STAT3 dysregulation is essential to improve our understanding of tumorigenesis and to develop novel anticancer therapeutics. The more we can learn about miRNAs-STAT3 interactions, the better able we will be to manipulate them for developing cancer therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.